3,662 research outputs found

    A look inside charmed-strange baryons from lattice QCD

    Full text link
    The electromagnetic form factors of the spin-3/2 Ω\Omega baryons, namely Ω\Omega, Ωc∗\Omega_c^\ast, Ωcc∗\Omega_{cc}^\ast and Ωccc\Omega_{ccc}, are calculated in full QCD on 323×6432^3\times 64 PACS-CS lattices with a pion mass of 156(9) MeV. The electric charge radii and magnetic moments from the E0E0 and M1M1 multipole form factors are extracted. Results for the electric quadrupole form factors, E2E2, are also given. Quark sector contributions are computed individually for each observable and then combined to obtain the baryon properties. We find that the charm quark contributions are systematically smaller than the strange-quark contributions in the case of the charge radii and magnetic moments. E2E2 moments of the Ωcc∗\Omega_{cc}^\ast and Ωccc\Omega_{ccc} provide a statistically significant data to conclude that their electric charge distributions are deformed to an oblate shape. Properties of the spin-1/2 Ωc\Omega_c and Ωcc\Omega_{cc} baryons are also computed and a thorough comparison is given. This complete study gives valuable hints about the heavy-quark dynamics in charmed hadrons.Comment: 14 pages, 14 figures. Includes a subsection on the systematic effect

    Electromagnetic structure of charmed baryons in Lattice QCD

    Get PDF
    As a continuation of our recent work on the electromagnetic properties of the doubly charmed Ξcc\Xi_{cc} baryon, we compute the charge radii and the magnetic moments of the singly charmed Σc\Sigma_c, Ωc\Omega_c and the doubly charmed Ωcc\Omega_{cc} baryons in 2+1 flavor Lattice QCD. In general, the charmed baryons are found to be compact as compared to the proton. The charm quark acts to decrease the size of the baryons to smaller values. We discuss the mechanism behind the dependence of the charge radii on the light valence- and sea-quark masses. The magnetic moments are found to be almost stable with respect to changing quark mass. We investigate the individual quark sector contributions to the charge radii and the magnetic moments. The magnetic moments of the singly charmed baryons are found to be dominantly determined by the light quark and the role of the charm quark is significantly enhanced for the doubly charmed baryons.Comment: Updated results, improved analysis. Version to appear in JHE

    Electromagnetic properties of doubly charmed baryons in Lattice QCD

    Full text link
    We compute the electromagnetic properties of \Xi_cc baryons in 2+1 flavor Lattice QCD. By measuring the electric charge and magnetic form factors of \Xi_cc baryons, we extract the magnetic moments, charge and magnetic radii as well as the \Xi_cc \Xi_cc \rho coupling constant, which provide important information to understand the size, shape and couplings of the doubly charmed baryons. We find that the two heavy charm quarks drive the charge radii and the magnetic moment of \Xi_cc to smaller values as compared to those of, e.g., the proton.Comment: 15 pages, 5 figures; added discussions and references, version accepted by PL
    • …
    corecore