7,360 research outputs found

    Non Singular Origin of the Universe and the Cosmological Constant Problem (CCP)

    Full text link
    We consider a non singular origin for the Universe starting from an Einstein static Universe in the framework of a theory which uses two volume elements −gd4x\sqrt{-{g}}d^{4}x and Φd4x\Phi d^{4}x, where Φ\Phi is a metric independent density, also curvature, curvature square terms, first order formalism and for scale invariance a dilaton field ϕ\phi are considered in the action. In the Einstein frame we also add a cosmological term that parametrizes the zero point fluctuations. The resulting effective potential for the dilaton contains two flat regions, for ϕ→∞\phi \rightarrow \infty relevant for the non singular origin of the Universe and ϕ→−∞\phi \rightarrow -\infty, describing our present Universe. Surprisingly, avoidance of singularities and stability as ϕ→∞\phi \rightarrow \infty imply a positive but small vacuum energy as ϕ→−∞\phi \rightarrow -\infty. Zero vacuum energy density for the present universe is the "threshold" for universe creation.Comment: awarded an honorable mention in the Gravity Research Foundation 2011 Awards for Essays in Gravitation for 201

    Non Singular Origin of the Universe and its Present Vacuum Energy Density

    Full text link
    We consider a non singular origin for the Universe starting from an Einstein static Universe, the so called "emergent universe" scenario, in the framework of a theory which uses two volume elements −gd4x\sqrt{-{g}}d^{4}x and Φd4x\Phi d^{4}x, where Φ\Phi is a metric independent density, used as an additional measure of integration. Also curvature, curvature square terms and for scale invariance a dilaton field ϕ\phi are considered in the action. The first order formalism is applied. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of scale invariance (S.I.). After S.S.B. of S.I., it is found that a non trivial potential for the dilaton is generated. In the Einstein frame we also add a cosmological term that parametrizes the zero point fluctuations. The resulting effective potential for the dilaton contains two flat regions, for ϕ→∞\phi \rightarrow \infty relevant for the non singular origin of the Universe, followed by an inflationary phase and ϕ→−∞\phi \rightarrow -\infty, describing our present Universe. The dynamics of the scalar field becomes non linear and these non linearities are instrumental in the stability of some of the emergent universe solutions, which exists for a parameter range of values of the vacuum energy in ϕ→−∞\phi \rightarrow -\infty, which must be positive but not very big, avoiding the extreme fine tuning required to keep the vacuum energy density of the present universe small. Zero vacuum energy density for the present universe defines the threshold for the creation of the universe.Comment: 28 pages, short version of this paper awarded an honorable mention by the Gravity Research Foundation, 2011, accepted for publication in International Journal of Modern Physics

    Curvature in causal BD-type inflationary cosmology

    Full text link
    We study a closed model of the universe filled with viscous fluid and quintessence matter components in a Brans-Dicke type cosmological model. The dynamical equations imply that the universe may look like an accelerated flat Friedmann-Robertson-Walker universe at low redshift. We consider here dissipative processes which follow a causal thermodynamics. The theory is applied to viscous fluid inflation, where accepted values for the total entropy in the observable universe is obtained.Comment: 11 pages, revtex 4. For a festschrift honoring Alberto Garcia. To be publishen in Gen. Rel. Gra

    Diffraction in time of a confined particle and its Bohmian paths

    Full text link
    Diffraction in time of a particle confined in a box which its walls are removed suddenly at t=0t=0 is studied. The solution of the time-dependent Schr\"{o}dinger equation is discussed analytically and numerically for various initial wavefunctions. In each case Bohmian trajectories of the particles are computed and also the mean arrival time at a given location is studied as a function of the initial state.Comment: 8 pages, 6 figure

    Is the cosmological dark sector better modeled by a generalized Chaplygin gas or by a scalar field?

    Full text link
    Both scalar fields and (generalized) Chaplygin gases have been widely used separately to characterize the dark sector of the Universe. Here we investigate the cosmological background dynamics for a mixture of both these components and quantify the fractional abundances that are admitted by observational data from supernovae of type Ia and from the evolution of the Hubble rate. Moreover, we study how the growth rate of (baryonic) matter perturbations is affected by the dark-sector perturbations.Comment: 20 pages, 9 figures, substantially revised, section on matter perturbations added, accepted for publication in EPJ
    • …
    corecore