3,812 research outputs found
Decoherence and entropy of primordial fluctuations II. The entropy budget
We calculate the entropy of adiabatic perturbations associated with a
truncation of the hierarchy of Green functions at the first non trivial level,
i.e. in a self-consistent Gaussian approximation. We give the equation
governing the entropy growth and discuss its phenomenology. It is parameterized
by two model-dependent kernels. We then examine two particular inflationary
models, one with isocurvature perturbations, the other with corrections due to
loops of matter fields. In the first model the entropy grows rapidely, while in
the second the state remains pure (at one loop).Comment: 28 page
Stability of spinor Fermi gases in tight waveguides
The two and three-body correlation functions of the ground state of an
optically trapped ultracold spin-1/2 Fermi gas (SFG) in a tight waveguide (1D
regime) are calculated in the plane of even and odd-wave coupling constants,
assuming a 1D attractive zero-range odd-wave interaction induced by a 3D p-wave
Feshbach resonance, as well as the usual repulsive zero-range even-wave
interaction stemming from 3D s-wave scattering. The calculations are based on
the exact mapping from the SFG to a ``Lieb-Liniger-Heisenberg'' model with
delta-function repulsions depending on isotropic Heisenberg spin-spin
interactions, and indicate that the SFG should be stable against three-body
recombination in a large region of the coupling constant plane encompassing
parts of both the ferromagnetic and antiferromagnetic phases. However, the
limiting case of the fermionic Tonks-Girardeau gas (FTG), a spin-aligned 1D
Fermi gas with infinitely attractive p-wave interactions, is unstable in this
sense. Effects due to the dipolar interaction and a Zeeman term due to a
resonance-generating magnetic field do not lead to shrinkage of the region of
stability of the SFG.Comment: 5 pages, 6 figure
Quantum dynamics and entanglement of a 1D Fermi gas released from a trap
We investigate the entanglement properties of the nonequilibrium dynamics of
one-dimensional noninteracting Fermi gases released from a trap. The gas of N
particles is initially in the ground state within hard-wall or harmonic traps,
then it expands after dropping the trap. We compute the time dependence of the
von Neumann and Renyi entanglement entropies and the particle fluctuations of
spatial intervals around the original trap, in the limit of a large number N of
particles. The results for these observables apply to one-dimensional gases of
impenetrable bosons as well.
We identify different dynamical regimes at small and large times, depending
also on the initial condition, whether it is that of a hard-wall or harmonic
trap. In particular, we analytically show that the expansion from hard-wall
traps is characterized by the asymptotic small-time behavior of the von Neumann entanglement entropy, and the relation
where V is the particle variance, which are analogous to
the equilibrium behaviors whose leading logarithms are essentially determined
by the corresponding conformal field theory with central charge . The time
dependence of the entanglement entropy of extended regions during the expansion
from harmonic traps shows the remarkable property that it can be expressed as a
global time-dependent rescaling of the space dependence of the initial
equilibrium entanglement entropy.Comment: 19 pages, 18 fig
Incremental learning of abnormalities in autonomous systems
In autonomous systems, self-awareness capabilities are useful to allow artificial agents to detect abnormal situations based on previous experiences. This paper presents a method that facilitates the incremental learning of new models by an agent. Available learned models can dynamically generate probabilistic predictions as well as evaluate their mismatch from current observations. Observed mismatches are grouped through an unsupervised learning strategy into different classes, each of them corresponding to a dynamic model in a given region of the state space. Such clusters define switching Dynamic Bayesian Networks (DBNs) employed for predicting future instances and detect anomalies. Inferences generated by several DBNs that use different sensorial data are compared quantitatively. For testing the proposed approach, it is considered the multi-sensorial data generated by a robot performing various tasks in a controlled environment and a real autonomous vehicle moving at a University Campus
Shortcuts to adiabaticity in a time-dependent box
A method is proposed to drive an ultrafast non-adiabatic dynamics of an
ultracold gas trapped in a box potential. The resulting state is free from
spurious excitations associated with the breakdown of adiabaticity, and
preserves the quantum correlations of the initial state up to a scaling factor.
The process relies on the existence of an adiabatic invariant and the inversion
of the dynamical self-similar scaling law dictated by it. Its physical
implementation generally requires the use of an auxiliary expulsive potential
analogous to those used in soliton control. The method is extended to a broad
family of many-body systems. As illustrative examples we consider the ultrafast
expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in
different dimensions, where the method exhibits an excellent robustness against
different regimes of interactions and the features of an experimentally
realizable box potential.Comment: 6 pp, 4 figures, typo in Eq. (6) fixe
BTZ black hole from (3+1) gravity
We propose an approach for constructing spatial slices of (3+1) spacetimes
with cosmological constant but without a matter content, which yields (2+1)
vacuum with solutions. The reduction mechanism from (3+1) to (2+1)
gravity is supported on a criterion in which the Weyl tensor components are
required to vanish together with a dimensional reduction via an appropriate
foliation. By using an adequate reduction mechanism from the
Pleba\'nski-Carter[A] solution in (3+1) gravity, the (2+1) BTZ solution can be
obtained.Comment: 4 pages, Late
On time and the quantum-to-classical transition in Jordan-Brans-Dicke quantum gravity
Any quantum theory of gravity which treats the gravitational constant as a
dynamical variable has to address the issue of superpositions of states
corresponding to different eigenvalues. We show how the unobservability of such
superpositions can be explained through the interaction with other
gravitational degrees of freedom (decoherence). The formal framework is
canonically quantized Jordan-Brans-Dicke theory. We discuss the concepts of
intrinsic time and semiclassical time as well as the possibility of tunneling
into regions corresponding to a negative gravitational constant. We calculate
the reduced density matrix of the Jordan-Brans-Dicke field and show that the
off-diagonal elements can be sufficiently suppressed to be consistent with
experiments. The possible relevance of this mechanism for structure formation
in extended inflation is briefly discussed.Comment: 10 pages, Latex, ZU-TH 15/93, BUTP-93/1
Biological monitoring of occupational exposure to metals in electric steel foundry workers and its contribution to 8-oxo-7,8-dihydro-2′-deoxyguanosine levels
In this study, the urinary concentrations of selected metals in workers from an electric steel foundry in Tunisia were assessed and compared with existing biological limit values and general population reference values. Moreover, the association between oxidative DNA damage, measured as urinary 8-oxo-7,8-dihydro-2\u2019deoxyguanosine (8-oxodG) and co-exposure to metals and polycyclic aromatic hydrocarbons (PAHs) was evaluated. Urinary levels of 12 metals were determined by inductively coupled plasma-mass spectrometry (ICP-MS) in end-shift spot samples from 89 workers. The urinary levels of phenanthrene (U-PHE), as marker of exposure to PAHs, and 8-oxodG were also available. Median levels ranged from 0.4 \ub5g/L (cobalt, Co, and thallium, Tl) to 895 \ub5g/L (zinc, Zn). Only 1% of samples was above the biological limit values for Co, and up to 13.5% of samples were above limit values for Cd. From 3.4% (Co) to 72% (lead, Pb) of samples were above the reference values for the general population. Multiple linear regression models, showed that manganese (Mn), Zn, arsenic (As), barium (Ba), Tl, and Pb were significant predictors of 8-oxodG (0.012 64 p 64 0.048); U-PHE was also a significant predictor (0.003 64 p 64 0.059). The variance explained by models was low (0.11 64 R2 64 0.17, p < 0.005), showing that metals and PAHs were minor contributors to 8-oxodG. Overall, the comparison with biological limit values showed that the study subjects were occupationally exposed to metals, with levels exceeding biological limit values only for Cd
High Power Cyclotrons for the Neutrino Experiments DAEÎŽALUS and IsoDAR
DAEÎŽALUS (Decay At rest Experiment for ÎŽcp At a Laboratory for Underground Science) has been proposed to measure the value of the CP violating phase delta through the oscillation of low energy muon anti-neutrinos to electron antineutrinos. With a single large detector, three accelerators at different distances enable the oscillation to be measured with sufficient accuracy. We have proposed the superconducting multi-megawatt DAEÎŽALUS Supercinducting Ring Cyclotron (DSRC) as the means of producing the 800 MeV 12 mA protons required, through the acceleration of H2+, ions with highly efficient stripping extraction. The DSRC comprises twin ion sources and injector cyclotrons, followed by a booster. The injector cyclotron can also be used for a separate experiment, IsoDAR (Isotope Decay At Rest) in which low energy protons produce Lithium 8, and thus a very pure electron antineutrino source which can be used to measure, or rule out, short range oscillation to a sterile neutrino. We describe recent developments in the designs of the injector and the booster, and the prospects for the two experiments
Exact propagators for atom-laser interactions
A class of exact propagators describing the interaction of an -level atom
with a set of on-resonance -lasers is obtained by means of the Laplace
transform method. State-selective mirrors are described in the limit of strong
lasers. The ladder, V and configurations for a three-level atom are
discussed. For the two level case, the transient effects arising as result of
the interaction between both a semi-infinite beam and a wavepacket with the
on-resonance laser are examined.Comment: 13 pages, 6 figure
- âŠ