16 research outputs found

    Image-Based Cardiac Diagnosis With Machine Learning: A Review

    Get PDF
    Cardiac imaging plays an important role in the diagnosis of cardiovascular disease (CVD). Until now, its role has been limited to visual and quantitative assessment of cardiac structure and function. However, with the advent of big data and machine learning, new opportunities are emerging to build artificial intelligence tools that will directly assist the clinician in the diagnosis of CVDs. This paper presents a thorough review of recent works in this field and provide the reader with a detailed presentation of the machine learning methods that can be further exploited to enable more automated, precise and early diagnosis of most CVDs

    Prediction of incident cardiovascular events using machine learning and CMR radiomics.

    Get PDF
    OBJECTIVES: Evaluation of the feasibility of using cardiovascular magnetic resonance (CMR) radiomics in the prediction of incident atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), and stroke using machine learning techniques. METHODS: We identified participants from the UK Biobank who experienced incident AF, HF, MI, or stroke during the continuous longitudinal follow-up. The CMR indices and the vascular risk factors (VRFs) as well as the CMR images were obtained for each participant. Three-segmented regions of interest (ROIs) were computed: right ventricle cavity, left ventricle (LV) cavity, and LV myocardium in end-systole and end-diastole phases. Radiomics features were extracted from the 3D volumes of the ROIs. Seven integrative models were built for each incident cardiovascular disease (CVD) as an outcome. Each model was built with VRF, CMR indices, and radiomics features and a combination of them. Support vector machine was used for classification. To assess the model performance, the accuracy, sensitivity, specificity, and AUC were reported. RESULTS: AF prediction model using the VRF+CMR+Rad model (accuracy: 0.71, AUC 0.76) obtained the best result. However, the AUC was similar to the VRF+Rad model. HF showed the most significant improvement with the inclusion of CMR metrics (VRF+CMR+Rad: 0.79, AUC 0.84). Moreover, adding only the radiomics features to the VRF reached an almost similarly good performance (VRF+Rad: accuracy 0.77, AUC 0.83). Prediction models looking into incident MI and stroke reached slightly smaller improvement. CONCLUSIONS: Radiomics features may provide incremental predictive value over VRF and CMR indices in the prediction of incident CVDs. KEY POINTS: • Prediction of incident atrial fibrillation, heart failure, stroke, and myocardial infarction using machine learning techniques. • CMR radiomics, vascular risk factors, and standard CMR indices will be considered in the machine learning models. • The experiments show that radiomics features can provide incremental predictive value over VRF and CMR indices in the prediction of incident cardiovascular diseases

    Image-Based Biological Heart Age Estimation Reveals Differential Aging Patterns Across Cardiac Chambers.

    Get PDF
    BACKGROUND: Biological heart age estimation can provide insights into cardiac aging. However, existing studies do not consider differential aging across cardiac regions. PURPOSE: To estimate biological age of the left ventricle (LV), right ventricle (RV), myocardium, left atrium, and right atrium using magnetic resonance imaging radiomics phenotypes and to investigate determinants of aging by cardiac region. STUDY TYPE: Cross-sectional. POPULATION: A total of 18,117 healthy UK Biobank participants including 8338 men (mean age = 64.2 ± 7.5) and 9779 women (mean age = 63.0 ± 7.4). FIELD STRENGTH/SEQUENCE: A 1.5 T/balanced steady-state free precession. ASSESSMENT: An automated algorithm was used to segment the five cardiac regions, from which radiomic features were extracted. Bayesian ridge regression was used to estimate biological age of each cardiac region with radiomics features as predictors and chronological age as the output. The "age gap" was the difference between biological and chronological age. Linear regression was used to calculate associations of age gap from each cardiac region with socioeconomic, lifestyle, body composition, blood pressure and arterial stiffness, blood biomarkers, mental well-being, multiorgan health, and sex hormone exposures (n = 49). STATISTICAL TEST: Multiple testing correction with false discovery method (threshold = 5%). RESULTS: The largest model error was with RV and the smallest with LV age (mean absolute error in men: 5.26 vs. 4.96 years). There were 172 statistically significant age gap associations. Greater visceral adiposity was the strongest correlate of larger age gaps, for example, myocardial age gap in women (Beta = 0.85, P = 1.69 × 10-26 ). Poor mental health associated with large age gaps, for example, "disinterested" episodes and myocardial age gap in men (Beta = 0.25, P = 0.001), as did a history of dental problems (eg LV in men Beta = 0.19, P = 0.02). Higher bone mineral density was the strongest associate of smaller age gaps, for example, myocardial age gap in men (Beta = -1.52, P = 7.44 × 10-6 ). DATA CONCLUSION: This work demonstrates image-based heart age estimation as a novel method for understanding cardiac aging. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 1

    Cardiac aging synthesis from cross-sectional data with conditional generative adversarial networks

    No full text
    Age has important implications for health, and understanding how age manifests in the human body is the first step for a potential intervention. This becomes especially important for cardiac health, since age is the main risk factor for development of cardiovascular disease. Data-driven modeling of age progression has been conducted successfully in diverse applications such as face or brain aging. While longitudinal data is the preferred option for training deep learning models, collecting such a dataset is usually very costly, especially in medical imaging. In this work, a conditional generative adversarial network is proposed to synthesize older and younger versions of a heart scan by using only cross-sectional data. We train our model with more than 14,000 different scans from the UK Biobank. The induced modifications focused mainly on the interventricular septum and the aorta, which is consistent with the existing literature in cardiac aging. We evaluate the results by measuring image quality, the mean absolute error for predicted age using a pre-trained regressor, and demonstrate the application of synthetic data for counter-balancing biased datasets. The results suggest that the proposed approach is able to model realistic changes in the heart using only cross-sectional data and that these data can be used to correct age bias in a dataset
    corecore