71,273 research outputs found
Time- and frequency-domain polariton interference
We present experimental observations of interference between an atomic spin
coherence and an optical field in a {\Lambda}-type gradient echo memory. The
interference is mediated by a strong classical field that couples a weak probe
field to the atomic coherence through a resonant Raman transition. Interference
can be observed between a prepared spin coherence and another propagating
optical field, or between multiple {\Lambda} transitions driving a single spin
coherence. In principle, the interference in each scheme can yield a near unity
visibility.Comment: 11 pages, 5 figure
Provenance history of a Late Triassic-Jurassic Gondwana margin forearc basin, Murihiku Terrane, North Island, New Zealand: petrographic and geochemical constraints
The Murihiku Terrane in the North Island was a forearc basin adjacent to a volcanic arc along the eastern margin of Gondwana during the Mesozoic. The rocks that infill the basin are mainly volcaniclastic sandstones and mudstones, often turbiditic, with sparse shellbeds, rhyolitic tuffs, carbonaceous sandstones, plant beds, concretionary horizons, and rare thick granitoid-rich conglomerates. Petrographic studies of the rock fragments in the sandstones show that andesites are the dominant lithic type, but there is a wide range of other lithologies, including dacites, rhyolites, ignimbrites, granitoids, quartzofeldspathic mica schists, rare amphibolites, and reworked mudstones and sandstones. The sandstones are texturally and mineralogically immature and suggest deposition relatively close to a source of high relief, undergoing physical rather than chemical weathering in cool- to cold-temperate conditions. Geochemical analyses of 67 whole-rock volcaniclastic sandstones and siltstones indicate that they were derived from an active and dissected volcanic arc in a convergent margin setting built upon relatively thin continental crust. Modal petrographic data and whole-rock geochemistry both confirm that there were systematic variations with time in the composition of clastic material being supplied to the basin. From the Late Triassic to Middle Jurassic, there was a decrease in silicic volcanic material, plutonics, and metamorphics, and an increase in the supply of andesitic detritus. This was followed in the Late Jurassic by a broader range of volcanic detritus, varying from basaltic andesite to rhyolite, which may have been caused by progressive extension of the volcanic arc and thinning of the crust, a precursor to the breakup of Gondwana in the Early-Middle Cretaceous. Comparison with the Southland segment of the Murihiku Terrane in the South Island suggests that there were significant along-arc source variations, with relatively less silicic but greater andesitic and continental crust contributions in the North Island than in Southland. This may be analogous to the modern Taupo-Kermadec arc where there is a south-north along-arc transition from a continental to an oceanic arc
Lower levels of damaged protein biomarkers in the plasma of overweight type 2 diabetic men following supplementation with a standardised bilberry extract
Peer reviewedPublisher PD
High efficiency coherent optical memory with warm rubidium vapour
By harnessing aspects of quantum mechanics, communication and information
processing could be radically transformed. Promising forms of quantum
information technology include optical quantum cryptographic systems and
computing using photons for quantum logic operations. As with current
information processing systems, some form of memory will be required. Quantum
repeaters, which are required for long distance quantum key distribution,
require optical memory as do deterministic logic gates for optical quantum
computing. In this paper we present results from a coherent optical memory
based on warm rubidium vapour and show 87% efficient recall of light pulses,
the highest efficiency measured to date for any coherent optical memory. We
also show storage recall of up to 20 pulses from our system. These results show
that simple warm atomic vapour systems have clear potential as a platform for
quantum memory
Technology for satellite power conversion
The work is this reporting period was concentrated on electronically calibrating the bolometer detectors. The calibration is necessary for two reasons: first, the power delivered to the rectifying circuit must be known in order to choose a diode with the appropriate barrier height, and second, the power captured by the antenna must be measured if the efficiency of the rectenna is to be divided into antenna efficiency and rectification efficiency. The millimeter wave region operation of the bolometers was simulated with a VHF (10 to 90 MHz) test signal. These detectors are accurate to within roughly 10%. The typical responsivity of the bolometers is 10 volts/watt and the NEP at 20 Hz is 5 times 10 to the minus 9th power W(Hz)-1/2
Technology for satellite power conversion
The work performed in this reporting period has concentrated on the metal-oxide-metal (MOM) diode. The fabrication procedure begins with the deposition of gold probing pads to provide a non-oxidizing contact to test the dc characteristics to the diode accurately. A thin patch capped with an insulating SiO2 layer, is deposited next to form the first half of the diode. The other half of the diode, typically Ni, is deposited completing the conduction path from the oxidized edge of the Ni patch to the opposite gold probing pad. It is important in this step that the last metallization take place without exposing the newly oxidized surface to the atmosphere. Successful production of diodes has been achieved. Work on millimeter wave frequency rectennas incorporating known semiconductor diode technology has been initiated
Electrophoretic deposition of gradated oxidation resistant coatings on tantalum-10 tungsten alloy
Material selection and electrophoretic deposition studies of high temperature oxidation resistant coatings on tantalum-10 tungsten allo
Development of oxidation resistant coatings for use above 3500 deg F
Physical property evaluation of oxidation resistant coating materials for high temperature protection of tantalum-base alloy
- …