993 research outputs found
Targeting the Endothelin A Receptor in IgA Nephropathy
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and carries a substantial risk of kidney failure. New agency-approved therapies, either specifically for IgAN or for chronic kidney disease (CKD) in general, hold out hope for mitigating renal deterioration in patients with IgAN. The latest addition to this therapeutic armamentarium targets the endothelin-A receptor (ETAR). Activation of ETAR on multiple renal cell types elicits a host of pathophysiological effects, including vasoconstriction, cell proliferation, inflammation, apoptosis, and fibrosis. Blockade of ETAR is renoprotective in experimental models of IgAN and reduces proteinuria in patients with IgAN. This review discusses the evidence supporting the use of ETAR blockade in IgAN as well as addressing the potential role for this class of agents among the current and emerging therapies for treating this disorder.</p
Targeting the Endothelin A Receptor in IgA Nephropathy
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and carries a substantial risk of kidney failure. New agency-approved therapies, either specifically for IgAN or for chronic kidney disease (CKD) in general, hold out hope for mitigating renal deterioration in patients with IgAN. The latest addition to this therapeutic armamentarium targets the endothelin-A receptor (ETAR). Activation of ETAR on multiple renal cell types elicits a host of pathophysiological effects, including vasoconstriction, cell proliferation, inflammation, apoptosis, and fibrosis. Blockade of ETAR is renoprotective in experimental models of IgAN and reduces proteinuria in patients with IgAN. This review discusses the evidence supporting the use of ETAR blockade in IgAN as well as addressing the potential role for this class of agents among the current and emerging therapies for treating this disorder.</p
Temperature dependence and mechanisms for vortex pinning by periodic arrays of Ni dots in Nb films
Pinning interactions between superconducting vortices in Nb and magnetic Ni
dots were studied as a function of current and temperature to clarify the
nature of pinning mechanisms. A strong current dependence is found for a square
array of dots, with a temperature dependent optimum current for the observation
of periodic pinning, that decreases with temperature as (1-T/Tc)3/2. This same
temperature dependence is found for the critical current at the first matching
field with a rectangular array of dots. The analysis of these results allows to
narrow the possible pinning mechanisms to a combination of two: the interaction
between the vortex and the magnetic moment of the dot and the proximity effect.
Moreover, for the rectangular dot array, the temperature dependence of the
crossover between the low field regime with a rectangular vortex lattice to the
high field regime with a square configuration has been studied. It is found
that the crossover field increases with decreasing temperature. This dependence
indicates a change in the balance between elastic and pinning energies,
associated with dynamical effects of the vortex lattice in the high field
range.Comment: 12 text pages (revtex), 6 figures (1st jpeg, 2nd-6th postscript)
accepted in Physical Review
Magnetar Driven Bubbles and the Origin of Collimated Outflows in Gamma-ray Bursts
We model the interaction between the wind from a newly formed rapidly
rotating magnetar and the surrounding supernova shock and host star. The
dynamics is modeled using the two-dimensional, axisymmetric thin-shell
equations. In the first ~10-100 seconds after core collapse the magnetar
inflates a bubble of plasma and magnetic fields behind the supernova shock. The
bubble expands asymmetrically because of the pinching effect of the toroidal
magnetic field, just as in the analogous problem of the evolution of pulsar
wind nebulae. The degree of asymmetry depends on E_mag/E_tot. The correct value
of E_mag/E_tot is uncertain because of uncertainties in the conversion of
magnetic energy into kinetic energy at large radii in relativistic winds; we
argue, however, that bubbles inflated by newly formed magnetars are likely to
be significantly more magnetized than their pulsar counterparts. We show that
for a ratio of magnetic to total power supplied by the central magnetar
L_mag/L_tot ~ 0.1 the bubble expands relatively spherically. For L_mag/L_tot ~
0.3, however, most of the pressure in the bubble is exerted close to the
rotation axis, driving a collimated outflow out through the host star. This can
account for the collimation inferred from observations of long-duration
gamma-ray bursts (GRBs). Outflows from magnetars become increasingly
magnetically dominated at late times, due to the decrease in neutrino-driven
mass loss as the young neutron star cools. We thus suggest that the
magnetar-driven bubble initially expands relatively spherically, enhancing the
energy of the associated supernova, while at late times it becomes
progressively more collimated, producing the GRB.Comment: 14 pages, 8 figures, accepted for publication in MNRA
- …