372 research outputs found
Why should we correct reported pulsation frequencies for stellar line-of-sight Doppler velocity shifts?
In the age of Kepler and Corot, extended observations have provided estimates
of stellar pulsation frequencies that have achieved new levels of precision,
regularly exceeding fractional levels of a few parts in . These high
levels of precision now in principle exceed the point where one can ignore the
Doppler shift of pulsation frequencies caused by the motion of a star relative
to the observer. We present a correction for these Doppler shifts and use
previously published pulsation frequencies to demonstrate the significance of
the effect. We suggest that reported pulsation frequencies should be routinely
corrected for stellar line-of-sight velocity Doppler shifts, or if a
line-of-sight velocity estimate is not available, the frame of reference in
which the frequencies are reported should be clearly stated.Comment: 5 pages, 1 figure, accepted for publication in MNRAS Letter
A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies
The frequencies of the solar acoustic oscillations vary over the activity
cycle. The variations in other activity proxies are found to be well correlated
with the variations in the acoustic frequencies. However, each proxy has a
slightly different time behaviour. Our goal is to characterize the differences
between the time behaviour of the frequency shifts and of two other activity
proxies, namely, the area covered by sunspots and the 10.7cm flux. We define a
new observable that is particularly sensitive to the short-term frequency
variations. We then compare the observable when computed from model frequency
shifts and from observed frequency shifts obtained with the Global Oscillation
Network Group (GONG) for cycle 23. Our analysis shows that on the shortest
time-scales the variations in the frequency shifts seen in the GONG
observations are strongly correlated with the variations in the area covered by
sunspots. However, a significant loss of correlation is still found. We verify
that the times when the frequency shifts and the sunspot area do not vary in a
similar way tend to coincide with the times of the maxima of the quasi-biennial
variations seen in the solar seismic data. A similar analysis of the relation
between the 10.7cm flux and the frequency shifts reveals that the short-time
variations in the frequency shifts follow even more closely those of the 10.7cm
flux than those of the sunspot area. However, a loss of correlation between
frequency shifts and 10.7cm flux variations is still found around the same
times.Comment: 7 pages, 6 figures, accepted for publication in MNRA
KOI-3158: The oldest known system of terrestrial-size planets
The first discoveries of exoplanets around Sun-like stars have fueled efforts to find ever smaller worlds evocative of Earth and other terrestrial planets in the Solar System. While gas-giant planets appear to form preferentially around metal-rich stars, small planets (with radii less than four Earth radii) can form under a wide range of metallicities. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the Universeās history when metals were far less abundant. We report Kepler spacecraft observations of KOI-3158, a metal-poor Sun-like star from the old population of the Galactic thick disk, which hosts five planets with sizes between Mercury and Venus. We used asteroseismology to directly measure a precise age of 11.2 Ā± 1.0 Gyr for the host star, indicating that KOI-3158 formed when the Universe was less than 20 % of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the Universeās 13.8-billion-year history, providing scope for the existence of ancient life in the Galaxy
On the relation between activity-related frequency shifts and the sunspot distribution over the solar cycle 23
The activity-related variations in the solar acoustic frequencies have been
known for 30 years. However, the importance of the different contributions is
still not well established. With this in mind, we developed an empirical model
to estimate the spot-induced frequency shifts, which takes into account the
sunspot properties, such as area and latitude. The comparison between the model
frequency shifts obtained from the daily sunspot records and those observed
suggests that the contribution from a stochastic component to the total
frequency shifts is about 30%. The remaining 70% is related to a global,
long-term variation. We also propose a new observable to investigate the short-
and mid-term variations of the frequency shifts, which is insensitive to the
long-term variations contained in the data. On the shortest time scales the
variations in the frequency shifts are strongly correlated with the variations
in the total area covered by sunspots. However, a significant loss of
correlation is still found, which cannot be fully explained by ignoring the
invisible side of the Sun when accounting for the total sunspot area. We also
verify that the times when the frequency shifts and the sunspot areas do not
vary in a similar way tend to coincide with the times of the maximum amplitude
of the quasi-biennial variations found in the seismic data.Comment: 4 pages, 2 figures, proceedings of the Joint TASC2 - KASC9 Workshop -
SPACEINN - HELAS8 Conference "Seismology of the Sun and the Distant Stars
2016: Using Today's Successes to Prepare the Future". To be published by the
EPJ Web of Conference
An Ancient Extrasolar System with Five Sub-Earth-size Planets
The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 Ā± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation
Super-Nyquist asteroseismology of solar-like oscillators with Kepler and K2 - expanding the asteroseismic cohort at the base of the red-giant branch
We consider the prospects for detecting solar-like oscillations in the
"super-Nyquist" regime of long-cadence (LC) Kepler photometry, i.e., above the
associated Nyquist frequency of approximately 283 {\mu}Hz. Targets of interest
are cool, evolved subgiants and stars lying at the base of the red-giant
branch. These stars would ordinarily be studied using the short-cadence (SC)
data, since the associated SC Nyquist frequency lies well above the frequencies
of the detectable oscillations. However, the number of available SC target
slots is quite limited. This imposes a severe restriction on the size of the
ensemble available for SC asteroseismic study.We find that archival Kepler LC
data from the nominal Mission may be utilized for asteroseismic studies of
targets whose dominant oscillation frequencies lie as high as approximately 500
{\mu}Hz, i.e., about 1.75- times the LC Nyquist frequency. The frequency
detection threshold for the shorter-duration science campaigns of the
re-purposed Kepler Mission, K2, is lower. The maximum threshold will probably
lie somewhere between approximately 400 and 450 {\mu}Hz. The potential to
exploit the archival Kepler and K2 LC data in this manner opens the door to
increasing significantly the number of subgiant and low-luminosity red-giant
targets amenable to asteroseismic analysis, overcoming target limitations
imposed by the small number of SC slots.We estimate that around 400 such
targets are now available for study in the Kepler LC archive. That number could
potentially be a lot higher for K2, since there will be a new target list for
each of its campaigns.Comment: Accepted for publication in MNRAS; 11 pages, 7 figures; reference
list update
- ā¦