15,343 research outputs found

    CAD-CAE methods to support restoration and museum exhibition of bronze statues: the “Principe Ellenistico”

    Get PDF
    Ancient bronze statues mainly require material integrity assessment and restoration. Restoration may include also the update of the museum exhibition, defining new structural frames and fragment re-composition to preserve the statue and improve the interpretation of the original aspect. This paper proves how engineering methods (such as Finite Element Analysis, Computer Aided Design modelling, Reverse Engineering) may assist cultural heritage experts and restorers in these tasks. It presents the activities made together with the Museo Nazionale Romano and the Istituto Superiore per la Conservazione e il Restauro, on the so-called “Principe Ellenistico” (Hellenistic Prince). This bronze was found in pieces (body, left arm and right leg), at the end of 19th century during an excavation made in Rome. No visual or reference sources can say its origin and its final posture was defined by restorers at the end of the 19th century according to their hypothesis and studies. In the 20th century, a further restoration was made on the critical areas of the surface, together with some structural improvement of the inner frame. Nowadays, after a review of its position inside the Museum, new experimental and numerical analyses have been carried out to better understand surface weakness and correct left arm positionin

    The quiescent X-ray emission of three transient X-ray pulsars

    Get PDF
    We report on BeppoSAX and Chandra observations of three Hard X-Ray Transients in quiescence containing fast spinning (P<5 s) neutron stars: A 0538-66, 4U 0115+63 and V 0332+53. These observations allowed us to study these transients at the faintest flux levels thus far. Spectra are remarkably different from the ones obtained at luminosities a factor >10 higher, testifying that the quiescent emission mechanism is different. Pulsations were not detected in any of the sources, indicating that accretion of matter down to the neutron star surface has ceased. We conclude that the quiescent emission of the three X-ray transients likely originates from accretion onto the magnetospheric boundary in the propeller regime and/or from deep crustal heating resulting from pycnonuclear reactions during the outbursts.Comment: Accepted for publication on ApJ (5 pages and 2 figures

    Missing hard states and regular outbursts: the puzzling case of the black hole candidate 4U 1630-472

    Get PDF
    4U 1630-472 is a recurrent X-ray transient classified as a black-hole candidate from its spectral and timing properties. One of the peculiarities of this source is the presence of regular outbursts with a recurrence period between 600 and 730 d that has been observed since the discovery of the source in 1969. We report on a comparative study on the spectral and timing behaviour of three consecutive outbursts occurred in 2006, 2008 and 2010. We analysed all the data collected by the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and the Rossi X-ray timing Explorer (RXTE) during these three years of activity. We show that, in spite of having a similar spectral and timing behaviour in the energy range between 3 and 30 keV, these three outbursts show pronounced differences above 30 keV. In fact, the 2010 outburst extends at high energies without any detectable cut-off until 150-200 keV, while the two previous outbursts that occurred in 2006 and 2008 are not detected at all above 30 keV. Thus, in spite of a very similar accretion disk evolution, these three outbursts exhibit totally different characteristics of the Compton electron corona, showing a softening in their evolution rarely observed before in a low mass X-ray binary hosting a black hole. We argue the possibility that the unknown perturbation that causes the outbursts to be equally spaced in time could be at the origin of this particular behaviour. Finally we describe several possible scenarios that could explain the regularity of the outbursts, identifying the most plausible, such as a third body orbiting around the binary system.Comment: April 2015: accepted for publication in MNRAS. May 2015: in pres

    Virtual prototyping of medieval weapons for historical reconstruction of siege scenarios starting from topography and archaeological investigations

    Get PDF
    Chronicles of sieges to castles or fortresses, using “machinae”, can often be found in historical sources. Moreover, archaeological excavations of castles or fortresses has brought to light rocks or projectiles whose carving suggests a military usage. Nevertheless, chronicles and discoveries alone, are seldom enough to propose a faithful reconstruction of these machines. Therefore, the aim of this research is the development of methodologies for reconstructing virtual scenarios of sieges, starting from the scarce information available. In order to achieve it, a procedure for the virtual reconstruction of the siege machine has been set up, focusing on typology and dimensions of the machines, also investigating possible fire positions according to topography. The entire procedure has been developed using the siege of Cervara di Roma’s Rocca as a case study. Late medieval chronicles (end of 13th Century) report the siege brought by the papal army in order to restore the jurisdiction on the Cervara’s stronghold, following the insurrection of a group of vassals headed by a monk named Pelagio. The discovery, in the area of the Rocca, of a stone that could have been used as a projectile confirms what reported. The proposed methodology is composed of two parts. The first one is connected to the study of the “internal ballistics”, to understand the performances and to build virtual models of siege machines. The second part is the study of the “external ballistics”, then to the positioning and shooting ability of possible machines, analysing the topography of the area. In this paper, we present the feasibility of this methodology through the preliminary results achieved correlating internal and external ballistics

    Anelastic relaxation and 139^{139}La NQR in La2x_{2-x}Srx_xCuO4_4 around the critical Sr content x=0.02

    Full text link
    Anelastic relaxation and 139^{139}La NQR relaxation measurements in La2x_{2-x}Srx_xCuO4_4 for Sr content x around 2 and 3 percent, are presented and discussed in terms of spin and lattice excitations and ordering processes. It is discussed how the phase diagram of La2x_{2-x}Srx_xCuO4_4 at the boundary between the antiferromagnetic (AF) and the spin-glass phase (x = 0.02) could be more complicate than previous thought, with a transition to a quasi-long range ordered state at T = 150 K, as indicated by recent neutron scattering data. On the other hand, the 139^{139}La NQR spectra are compatible with a transition to a conventional AF phase around T = 50 K, in agreement with the phase diagram commonly accepted in the literature. In this case the relaxation data, with a peak of magnetic origin in the relaxation rate around 150 K at 12 MHz and the anelastic counterparts around 80 K in the kHz range, yield the first evidence in La1.98_{1.98}Sr0.02_{0.02}CuO4_4 of freezing involving simultaneously lattice and spin excitations. This excitation could correspond to the motion of charged stripes.Comment: 10 pages, 8 figure

    Comparison of algorithms for recognition of cylindrical features in a voxel-based approach for tolerance inspection

    Get PDF
    In injection molding production, automatic inspections are needed to control defects and evaluate the assigned functional tolerances of components and dies. With the “Smart Manufacturing” approach as a point of view, this paper resumes part of a wider research aiming the integration and the automation of a Reverse Engineering inspection process in components and die set-up. The paper compares two fitting approaches for recognition of portions of cylindrical surfaces. Therefore, they are evaluated in the respect of an automatic voxel-based feature recognition of 3D dense cloud of points for tolerance inspection of injection-molded parts. The first approach is a 2D Levenberg Marquardt algorithm coupled with a first guess evaluation made by the Kasa algebraic form. The second one is a 3D fitting based on the RANdom SAmple Consensus algorithm (RANSAC). The evaluation has been made according to the ability of the approaches of working on points associated to the voxel structure that locally divides the cloud to characterize planar and curved surfaces. After the presentation of the overall automatic recognition, the cylindrical surface algorithms are presented and compared trough test cases
    corecore