23 research outputs found
Reef response to sea-level and environmental changes during the last deglaciation: Integrated Ocean Drilling Program Expedition 310, Tahiti Sea Level
The last deglaciation is characterized by a rapid sea-level rise and coeval abrupt environmental changes. The Barbados coral reef record suggests that this period has been punctuated by two brief intervals of accelerated melting (meltwater pulses, MWP), occurring at 14.08-13.61 ka and 11.4-11.1 ka (calendar years before present), that are superimposed on a smooth and continuous rise of sea level. Although their timing, magnitude, and even existence have been debated, those catastrophic sea-level rises are thought to have induced distinct reef drowning events. The reef response to sea-level and environmental changes during the last deglacial sea-level rise at Tahiti is reconstructed based on a chronological, sedimentological, and paleobiological study of cores drilled through the relict reef features on the modern forereef slopes during the Integrated Ocean Drilling Program Expedition 310, complemented by results on previous cores drilled through the Papeete reef. Reefs accreted continuously between 16 and 10 ka, mostly through aggradational processes, at growth rates averaging 10 mm yr-1. No cessation of reef growth, even temporary, has been evidenced during this period at Tahiti. Changes in the composition of coralgal assemblages coincide with abrupt variations in reef growth rates and characterize the response of the upward-growing reef pile to nonmonotonous sea-level rise and coeval environmental changes. The sea-level jump during MWP 1A, 16 ± 2 m of magnitude in ~350 yr, induced the retrogradation of shallow-water coral assemblages, gradual deepening, and incipient reef drowning. The Tahiti reef record does not support the occurrence of an abrupt reef drowning event coinciding with a sea-level pulse of ~15 m, and implies an apparent rise of 40 mm yr-1 during the time interval corresponding to MWP 1B at Barbados. © 2012 Geological Society of America
Late glacial to post glacial sea levels in the Western Indian Ocean
Late glacial to post glacial sea-level changes provide direct evidence of the progress of melting of large ice sheets during the last deglaciation but, although the correlation between ice and ocean volumes is incontrovertible, the causal link is commonly obscured. Local effects including tectonics, isostatic and hydroisostatic responses and equatorial ocean-syphoning impose additional signals that hide the true picture.
A detailed regional study of the Western Indian Ocean based on the analysis of drill cores carried out through modern reefs, in combination with observations and sampling of reef foreslopes, and investigations of outcrops provides a comprehensive data base. Sites from a range of tectonic settings include the microcontinental margins of Madagascar, the granitic Seychelles, and the isolated volcanic islands of Réunion, Mauritius and the Comoros in which the effects of subsidence can be shown to be small. These cover a range of latitudes, and comparisons with adjacent sites on continental margins allow the construction of sea-level curves that closely reflect the eustatic response and disengage this from the effects of other mechanisms.
The Mayotte foreslope in the Comoro Islands provides the first coral reef record of sea-level change during the early deglaciation in the Indian Ocean (110–115 m below present sea level between 18,000 and 17,000 yr BP). Two distinctive reef terraces, at 90 and 60 m water depth are dated at 13,600 yr BP and partly attributed to the Younger Dryas period (12,700–11,600 cal yr BP). Reef drowning at around 13,500 yr BP may correspond to Meltwater Pulse 1A, and although there were surges in the rate of sea-level rise, most notably between 11,950 and 11,350 yr BP, there is little evidence to support a well-defined Meltwater Pulse 1B.
Reconstructed Holocene sea-level curves are in good agreement and reflect a rapid sea-level rise of about 6 mm yr−1 between 10,000 and 7500 yr BP, followed by a clear inflection around 7500 yr BP when the rate fell to 1.1 mm yr−1. Modern reefs started to grow 8000–9000 years ago. In the post-glacial period the rate of sea-level rise was 1–1.5 mm yr−1 before stabilization at its present level 3000–2500 years ago.
Curves for the 10,000–6000 yr−1 BP interval correspond closely with those predicted by theoretical models but lie below these in the subsequent period. In particular, and with the exception of the margins of the Madagascar microcontinent influenced by hydroisostatic processes, they do not reflect predicted higher sea-level stands during the late Holocene
Pollutant lead transport and input to the Caribbean during the 20 century

Here we evidence significant shifts in the sources of Pb input to the Caribbean based on lead
isotope records from massive corals collected near Puerto Rico. While mean Pb/Ca ratios in these corals
generally mimic alkyl Pb consumption in the US, we observe a 5 to 8 years delay in the maximum Pb peak in the
1970s. Pollutant Pb decay in corals is not as rapid as expected from the phasing out of leaded gasoline related to
European and regional sources. Furthermore, Pb/Pb imprints often display significant interannual variations
with no clear temporal evolution. This seems to be partly connected to specific meteorological events and
seasonal atmospheric shifts with mixed input from the southern US, Europe and Latin America/Caribbean. New
corats from the Western Caribbean (Martinique, Guadeloupe) are presently analysed in order to investigate these
isotopic shifts in relation to atmospheric input sources and oceanic recirculation
A new model evaluating Holocene sediment dynamics: insights from a mixed carbonate-siliciclastic lagoon (Bora Bora, Society Islands, French Polynesia, South Pacific)
International audienceMixed carbonate-siliciclastic lagoons of barrier reefs provide great potential as sedimentary archives focusing on paleoenvironmental and paleoclimatic changes as well as on event deposition. Sediment sources include lagoonal carbonate production, the marginal reef and the volcanic hinterland. Mixed carbonate-siliciclastic continent attached coastal lagoons have been intensively studied, however, their isolated oceanic counterparts have been widely disregarded. Here, we present a new model of Holocene sediment dynamics in the barrier-reef lagoon of Bora Bora based on sedimentological, paleontological, geochronological and geochemical data. The lagoonal succession started with a Pleistocene soil representing the Lowstand Systems Tract. As the rising Holocene sea inundated the carbonate platform, peat accumulated locally similar to 10,650-9400 years BP. Mixed carbonate-siliciclastic sedimentation started ca. 8700-5500 years BP and represents the Transgressive Systems Tract. During that time, sediments were characterized by relatively coarse grain size and contained high amounts of terrestrial material from the volcanic hinterland as well as carbonate sediments mainly produced within the lagoon. Siliciclastic content decreases throughout the Holocene. After the rising sea had reached its modern level, sand aprons formed between reef crest and lagoon creating transport pathways for reef-derived material leading to carbonate-dominated sedimentation ca. 6000-3009 years BP during the Highstand Systems Tract. However, mainly fine material was transported and accumulated in the lagoon while coarser grains were retained on the prograding sand apron. From ca. 4500-500 years BP, significant variations in grain-size, total organic carbon as indicator for primary productivity, Ca and Cl element intensities as qualitative indicators for carbonate availability and lagoonal salinity are seen. Such patterns could indicate event (re-)deposition and correlate with contemporaneous event deposits found in the lagoon of nearby Tahaa, which are supposed to be induced by elevated cyclone activity. Correspondingly, enhanced erosion and run-off from the volcanic hinterland as well as lower lagoonal salinity would be associated with intense rainfall during repeated cyclone landfall. Increased amounts of coarse-grained sediment from marginal reef areas would be transported into the lagoon. However, Ti/Ca and Fe/Ca ratios as proxies for terrigenous sediment delivery have incessantly declined since the mid-Holocene. Also, benthic foraminiferal faunas do not validate reef-to-lagoon transport of sediment. Alternatively, the apparent onset of higher hydrodynamic energy conditions can be explained by more permanent southeast trade winds and higher-than-present sea level, which are supposed for the mid-late Holocene in the south Pacific. Sustained winds would have flushed higher amounts of open ocean water into the lagoon enhancing primary productivity and the amount of pelagic organisms within the lagoon while lowering lagoonal salinity. We propose the shift towards coarser-grained sedimentation patterns during the mid-late Holocene to reflect sediment-load shedding of sand aprons due to oversteepening of slopes at sand apron/lagoon edges during times of stronger trades and higher-than-present sea level of the Highstand Systems Tract, which led to redeposition of sediment even within the lagoon center. Modern conditions including a sea-level fall to modern level were reached ca. 1000 years BP, and lagoonal infill has been determined to a large part by fine-grained carbonate-dominated sediments produced within the lagoon and derived from the marignal reef. Infill of lagoonal accommodation space via sand aprons is estimated to be up to six times higher than infill by lagoonal background sedimentation and emphasizes the importance of the progradation of sand aprons. Contrary to the commonly supposed assumption that coarse grained sediment layers within fine-grained lagoonal successions represent overwash events induced by storms or periods of higher storm activity, we postulate a new model of long-term lagoonal sediment dynamics including sea level, climatic change and geomorphological variation of the barrier reef lagoon. (C) 2016 Elsevier B.V. All rights reserved