35 research outputs found

    Endocytosis of plasma-derived factor V by megakaryocytes occurs via a clathrin-dependent, specific membrane binding event

    Full text link
    Megakaryocytes were analyzed for their ability to endocytose factor V to define the cellular mechanisms regulating this process. In contrast to fibrinogen, factor V was endocytosed by megakaryocytes derived from CD34 + cells or megakaryocyte-like cell lines, but not by platelets. CD41 + ex vivo -derived megakaryocytes endocytosed factor V, as did subpopulations of the megakaryocyte-like cells MEG-01, and CMK. Similar observations were made for fibrinogen. Phorbol diester-induced megakaryocytic differentiation of the cell lines resulted in a substantial increase in endocytosis of both proteins as compared to untreated cells that did not merely reflect their disparate plasma concentrations. Factor IX, which does not associate with platelets or megakaryocytes, was not endocytosed by any of the cells examined. Endocytosis of factor V by megakaryocytes proceeds through a specific and independent mechanism as CHRF-288 cells endocytosed fibrinogen but not factor V, and the presence of other plasma proteins had no effect on the endocytosis of factor V by MEG-01 cells. Furthermore, as the endocytosis of factor V was also demonstrated to occur through a clathrin-dependent mechanism, these combined data demonstrate that endocytosis of factor V by megakaryocytes occurs via a specific, independent, and most probably receptor-mediated, event.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75473/1/j.1538-7836.2005.01190.x.pd

    Recipient and donor thrombophilia and the risk of portal venous thrombosis and hepatic artery thrombosis in liver recipients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular complications, such as HAT, are an important cause of graft loss and recipient mortality. We aimed to characterize post-transplant thrombotic events in a cohort of liver transplant recipients, and identify independent risk factors for these complications.</p> <p>Methods</p> <p>We conducted a thrombophilic study of 293 orthotopic liver transplants performed in the Digestive Surgery Department of the 12 de Octubre Hospital (Madrid, Spain) between January 2001 and December 2006.</p> <p>Results</p> <p>The most frequent post-transplant thrombotic events were HAT (9%) and PVT (1.7%). The one variable associated with post-transplant thrombotic event was a high fibrinogen level in the global cohort of liver transplantation. But toxicity as event post-OLT has been associated with post-transplant thrombotic event in the retrospective group and high fibrinogen level and low protein C levels were associated post-transplant thrombotic event in the prospective group. Liver disease relapse (HR 6.609, p < 0.001), high levels of FVIII (HR 1.008, p = 0.019)) and low levels of antithrombin (HR 0.946, p < 0.001) were associated with poor overall survival (OS).</p> <p>In conclusion, high fibrinogen and decreased protein C levels were associated with allograft thrombosis. Further studies are required in order to assess the clinical relevance of these parameters in prospective studies and to study the effect of anticoagulation prophylaxis in this group of risk.</p

    A Genome-Wide Association Study of the Protein C Anticoagulant Pathway

    Get PDF
    The Protein C anticoagulant pathway regulates blood coagulation by preventing the inadequate formation of thrombi. It has two main plasma components: protein C and protein S. Individuals with protein C or protein S deficiency present a dramatically increased incidence of thromboembolic disorders. Here, we present the results of a genome-wide association study (GWAS) for protein C and protein S plasma levels in a set of extended pedigrees from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. A total number of 397 individuals from 21 families were typed for 307,984 SNPs using the Infinium® 317 k Beadchip (Illumina). Protein C and protein S (free, functional and total) plasma levels were determined with biochemical assays for all participants. Association with phenotypes was investigated through variance component analysis. After correcting for multiple testing, two SNPs for protein C plasma levels (rs867186 and rs8119351) and another two for free protein S plasma levels (rs1413885 and rs1570868) remained significant on a genome-wide level, located in and around the PROCR and the DNAJC6 genomic regions respectively. No SNPs were significantly associated with functional or total protein S plasma levels, although rs1413885 from DNAJC6 showed suggestive association with the functional protein S phenotype, possibly indicating that this locus plays an important role in protein S metabolism. Our results provide evidence that PROCR and DNAJC6 might play a role in protein C and free protein S plasma levels in the population studied, warranting further investigation on the role of these loci in the etiology of venous thromboembolism and other thrombotic diseases

    Profile of efraloctocog alfa and its potential in the treatment of hemophilia A

    No full text
    Lindsey A George,1,2 Rodney M Camire1&ndash;3 1Division of Hematology, The Children&#39;s Hospital of Philadelphia, Philadelphia, PA, USA; 2Center for Cellular and Molecular Therapeutics, The Children&#39;s Hospital of Philadelphia, Philadelphia, PA, USA; 3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Abstract: Hemophilia care has improved dramatically over the past 50 years, evolving from plasma concentrates, to purified plasma proteins, to recombinant clotting factors. These collective developments allowed for home delivery of on-demand and prophylactic treatment, resulting in the reduction of hemophilia morbidity and mortality and improved quality of life. Although efficacious in treating bleeding, conventional factor products&#39; half-lives require frequent venipuncture, which remains a significant burden to patients. Despite the remarkable advances in hemophilia care, no improvements have, until now, been made to the pharmacokinetic properties of factor products. Multiple strategies have more recently been employed to generate novel bioengineered products that, with great hope, represent the next wave of progress in hemophilia care. The use of these products will undoubtedly raise important discussion about choosing conventional factor over new long-acting factor products. Incorporation of these therapies into clinical care is accompanied by unanswered safety questions that will likely be evaluated only in postmarketing surveillance analysis. Further, these products may change current treatment paradigms with unclear cost repercussions and feasibility. This paper will review efraloctocog alfa (FVIII-Fc) and its role in the treatment of hemophilia A. Keywords: hemophilia A, factor VIII, Fc fusion, bioengineered products, efraloctocog alf

    THE NATURAL ARG386CYS MUTATION IN THE COAGULATION FACTOR X, AS A TOOL TO INVESTIGATE DIFFERENT FX-REQUIREMENTS IN INITIATION AND PROPAGATION PHASES.

    No full text
    Background: The natural coagulation factor X (FX) substitution FXR386C, affecting the catalytic domain, provided us with a tool to investigate TF/FVIIa and FVIIIa/FIXa -dependent FX activation. Materials and methods: The natural (R386C) and designed (R386A and the inactive S379A-R386C) FX mutants were stably expressed in Human Embrionic Kidney cells and purified by ion exchange, immunoaffinity and hydroxyapatite chromatography. In vitro secretion and in vivo stability in mice of recombinant molecules were studied. Variants were characterized by coagulation tests (PT and APTT) and functional assays in plasma and in reconstituted systems. Results: Alignment of mammalian sequences of vitamin K-dependent coagulation factors showed that the R386 residue is not conserved among serine-proteases. Moreover, in the crystallographic structure of FXa it is exposed on the surface of the catalytic domain. Major alteration of FX biosynthesis or function of the 386C variant were excluded by its normal i) secretion in vitro (1008±504 ng/ml vs 813±190 ng/ml of rFXwt), ii) clearance in vivo iii) procoagulant activity in a PT-based assay (rFX386C 105,7±5,7%). PT activity in plasma of the rFX386A and rFX379A386C variants were 173.6±7.1% and 0±0%, respectively. Instead, significantly reduced APTT values (rFX386C 28.7±0.5%, rFX386A 52.3±0.6%, rFX379A386C 0±0%) suggested impaired intrinsic activation of mutants with substitution at the 386 position. Functional assays exploiting fluoro/chromogenic substrates were used to dissect activation and activity of FX variants. Extrinsic activation, amydolytic and thrombin generation activities were indistinguishable from those of rFXwt. Noteworthy, a significant variation in kinetic parameters was measured for the rFX386C and rFX386A mutants in FXa generation assay upon activation by purified FVIIIa/FIXa complex. Conclusions: The A386C substitution in the coagulation FX is compatible with normal protein biosynthesis and almost exclusively affects its intrinsic activation. The 386 residue is potentially included in a functional exosite involved in macromolecular interactions

    Platelet-derived factor V/Va Leiden cofactor activities are sustained on the surface of activated platelets despite the presence of activated protein C

    No full text
    We investigated the role of the thrombin-activated platelet in modulating the rate and extent of activated protein C (APC)-catalyzed inactivation of platelet-derived factor Va and factor VaLeiden. Platelet-derived factor Va and factor VaLeiden were inactivated by APC at near identical rates; however, complete inactivation of the cofactors was never achieved. Greater residual cofactor activity remained when using thrombin-activated platelets compared with that observed with synthetic phospholipid vesicles and platelet-derived microparticles, suggesting that thrombin-activated platelets protect the cofactors from APC-catalyzed inactivation. This apparent protection was not due to (1) an insufficient number of membrane binding sites for APC or factor Va; (2) the destruction of these sites; or (3) the presence of a platelet-associated APC inhibitor. Results from a plasma-based clotting assay (with or without APC) with platelets or PCPS vesicles added to induce clot formation indicated that, even in the presence of high concentrations of APC, platelets offered protection of the cofactor by delaying cleavage at Arg506. This resulted in incomplete proteolysis of the heavy chain, suggesting that platelets can also protect plasma-derived factor Va from APC-catalyzed inactivation. However, additional experiments indicated that the plasma-derived cofactor, bound to thrombin-activated platelets, was completely inactivated by APC, suggesting that the plasma and platelet-derived cofactor pools represent different substrates for APC. Collectively, these results indicate that platelets sustain procoagulant events by providing a membrane surface that delays cofactor inactivation and by releasing a cofactor molecule that displays an APC resistant phenotype. Thus, at sites of arterial injury, the factor VLeiden mutation may not as readily predict arterial thrombosis, because the normal and variant platelet-derived cofactors are equally resistant to APC at the activated platelet surface

    Impaired prothrombinase activity of factor X Gly381 Asp results in severe familial CRM+ FX deficiency

    No full text
    We investigated three members of a large Omani family affected by severe factor X (FX) deficiency (coagulant activity <1%) and showing marked differences in the onset of severe hemorrhagic symptoms. All patients were homozygous for a novel FX mutation (Gly381Asp) in the structurally conserved region of the serine protease active site. Expression levels of recombinant 381D-FX were similar to those of wt-FX, indicating the presence of a severe CRM+ FX deficiency, a poorly investigated condition. The 381D-FX was normally activated and did not show a detectable amidolytic activity. Instead, we observed a residual activity in a prothrombin-time based assay (1%) and in prothrombinase assays both in plasma (1%) and in purified systems (3%). Comparison with FX variants characterized by reduced activation suggests that mutations affecting FX activity might result in a more pronounced impairment of coagulation and thus in severe hemorrhagic phenotype. In addition, this study indicates that the hemorrhagic heterogeneity observed in FX deficiencies is only partially explained by molecular analysis of FX gene

    Factor V anticoagulant cofactor activity that targets the early phase of coagulation

    No full text
    Tissue factor pathway inhibitor (TFPI), the main inhibitor of initiation of coagulation, exerts an important anticoagulant role through the factor Xa (FXa)-dependent inhibition of tissue factor/factor VIIa (FVIIa). Protein S is a TFPI cofactor, enhancing the efficiency of FXa inhibition. TFPI can also inhibit prothrombinase assembly by directly interacting with coagulation factor V (FV) which has been activated by FXa. Since full-length TFPI associates with FV in plasma, we hypothesized that FV may influence TFPI inhibitory function. Using pure component FXa inhibition assays, we found that while FV alone did not influence TFPI-mediated FXa inhibition, it further enhanced TFPI in the presence of protein S, resulting in an ~8-fold reduction in Ki compared with TFPI alone. A FV variant (R709Q/R1018Q/R1545Q, FVΔIIa) that cannot be cleaved/activated by thrombin or FXa, also enhanced TFPI-mediated inhibition of FXa ~12-fold in the presence of protein S. In contrast, neither activated FV (FVa) nor recombinant B-domain-deleted FV could enhance TFPI-mediated inhibition of FXa in the presence of protein S, suggesting a functional contribution of the B domain. Using TFPI and protein S variants we show further that the enhancement of TFPI-mediated FXa inhibition by protein S and FV depends on a direct protein S/TFPI interaction and that the TFPI C-terminal tail is not essential for this enhancement. In FXa-catalyzed prothrombin activation assays, both FV and FVΔIIa (but not FVa) enhanced TFPI function in the presence of protein S. These results demonstrate a new anticoagulant (cofactor) function of FV that targets the early phase of coagulation before prothrombinase assembly
    corecore