412 research outputs found
Non-Abelian statistics in the interference noise of the Moore-Read quantum Hall state
We propose noise oscillation measurements in a double point contact,
accessible with current technology, to seek for a signature of the non-abelian
nature of the \nu=5/2 quantum Hall state. Calculating the voltage and
temperature dependence of the current and noise oscillations, we predict the
non-abelian nature to materialize through a multiplicity of the possible
outcomes: two qualitatively different frequency dependences of the nonzero
interference noise. Comparison between our predictions for the Moore-Read state
with experiments on \nu=5/2 will serve as a much needed test for the nature of
the \nu=5/2 quantum Hall state.Comment: 4 pages, 4 figures v2: typo's corrected, discussions clarified,
references adde
Electron interferometry in quantum Hall regime: Aharonov-Bohm effect of interacting electrons
An apparent h/fe Aharonov-Bohm flux period, where f is an integer, has been
reported in coherent quantum Hall devices. Such sub-period is not expected for
non-interacting electrons and thus is thought to result from interelectron
Coulomb interaction. Here we report experiments in a Fabry-Perot interferometer
comprised of two wide constrictions enclosing an electron island. By carefully
tuning the constriction front gates, we find a regime where interference
oscillations with period h/2e persist throughout the transition between the
integer quantum Hall plateaus 2 and 3, including half-filling. In a large
quantum Hall sample, a transition between integer plateaus occurs near
half-filling, where the bulk of the sample becomes delocalized and thus
dissipative bulk current flows between the counterpropagating edges
("backscattering"). In a quantum Hall constriction, where conductance is due to
electron tunneling, a transition between forward- and back-scattering is
expected near the half-filling. In our experiment, neither period nor amplitude
of the oscillations show a discontinuity at half-filling, indicating that only
one interference path exists throughout the transition. We also present
experiments and an analysis of the front-gate dependence of the phase of the
oscillations. The results point to a single physical mechanism of the observed
conductance oscillations: Aharonov-Bohm interference of interacting electrons
in quantum Hall regime.Comment: 10 pages, 4 Fig
Primary-Filling e/3 Quasiparticle Interferometer
We report experimental realization of a quasiparticle interferometer where
the entire system is in 1/3 primary fractional quantum Hall state. The
interferometer consists of chiral edge channels coupled by quantum-coherent
tunneling in two constrictions, thus enclosing an Aharonov-Bohm area. We
observe magnetic flux and charge periods h/e and e/3, equivalent to creation of
one quasielectron in the island. Quantum theory predicts a 3h/e flux period for
charge e/3, integer statistics particles. Accordingly, the observed periods
demonstrate the anyonic statistics of Laughlin quasiparticles
Noise and Full Counting Statistics of Incoherent Multiple Andreev Reflection
We present a general theory for the full counting statistics of multiple
Andreev reflections in incoherent superconducting-normal-superconducting
contacts. The theory, based on a stochastic path integral approach, is applied
to a superconductor-double barrier system. It is found that all cumulants of
the current show a pronounced subharmonic gap structure at voltages
. For low voltages , the counting statistics
results from diffusion of multiple charges in energy space, giving the th
cumulant , diverging for . We show that this
low-voltage result holds for a large class of incoherent
superconducting-normal-superconducting contacts.Comment: 4 pages, 4 figure
- …