1,250 research outputs found

    Giant Gravitons with NSNS B field

    Get PDF
    We study the motion of a D(8-p)-brane probe in the background created by a stack of non-threshold (D(p-2), Dp) bound states for 2≤p≤62\le p\le 6. The brane probe and the branes of the background have two common directions. We show that for a particular value of the worldvolume gauge field there exist configurations of the probe brane which behave as massless particles and can be interpreted as gravitons blown up into a fuzzy sphere and a noncommutative plane. We check this behaviour by studying the motion and energy of the brane and by determining how supersymmetry is broken by the probe as it moves under the action of the background.Comment: 24 pages, LaTe

    Flux Stabilization of D-branes in a non-threshold bound state background

    Get PDF
    We study some configurations of brane probes which are partially wrapped on spheres transverse to a stack of non-threshold bound states. The latter are represented by the corresponding supergravity background. Two cases are studied: D(10-p)-branes in the background of (D(p-2), Dp) bound states and D(8-p)-branes in the (NS5, Dp) geometry. By using suitable flux quantization rules of the worldvolume gauge field, we determine the stable configurations of the probe. The analysis of the energy and supersymmetry of these configurations reveals that they can be interpreted as bound states of lower dimensional objects polarized into a D-brane.Comment: 11 pages, LaTe

    Primary-Filling e/3 Quasiparticle Interferometer

    Full text link
    We report experimental realization of a quasiparticle interferometer where the entire system is in 1/3 primary fractional quantum Hall state. The interferometer consists of chiral edge channels coupled by quantum-coherent tunneling in two constrictions, thus enclosing an Aharonov-Bohm area. We observe magnetic flux and charge periods h/e and e/3, equivalent to creation of one quasielectron in the island. Quantum theory predicts a 3h/e flux period for charge e/3, integer statistics particles. Accordingly, the observed periods demonstrate the anyonic statistics of Laughlin quasiparticles

    Electron interferometry in quantum Hall regime: Aharonov-Bohm effect of interacting electrons

    Full text link
    An apparent h/fe Aharonov-Bohm flux period, where f is an integer, has been reported in coherent quantum Hall devices. Such sub-period is not expected for non-interacting electrons and thus is thought to result from interelectron Coulomb interaction. Here we report experiments in a Fabry-Perot interferometer comprised of two wide constrictions enclosing an electron island. By carefully tuning the constriction front gates, we find a regime where interference oscillations with period h/2e persist throughout the transition between the integer quantum Hall plateaus 2 and 3, including half-filling. In a large quantum Hall sample, a transition between integer plateaus occurs near half-filling, where the bulk of the sample becomes delocalized and thus dissipative bulk current flows between the counterpropagating edges ("backscattering"). In a quantum Hall constriction, where conductance is due to electron tunneling, a transition between forward- and back-scattering is expected near the half-filling. In our experiment, neither period nor amplitude of the oscillations show a discontinuity at half-filling, indicating that only one interference path exists throughout the transition. We also present experiments and an analysis of the front-gate dependence of the phase of the oscillations. The results point to a single physical mechanism of the observed conductance oscillations: Aharonov-Bohm interference of interacting electrons in quantum Hall regime.Comment: 10 pages, 4 Fig
    • …
    corecore