18,647 research outputs found
Determination of bone mineral mass in vivo
Radiographic equipment incorporates two radiation sources, generating high-energy and low-energy beams. Recording equipment measures amount of radiation that has penetrated limb. Data are fed into computer that determines mass of the examined bone
Temporal fluctuations in the differential rotation of cool active stars
This paper reports positive detections of surface differential rotation on
two rapidly rotating cool stars at several epochs, by using stellar surface
features (both cool spots and magnetic regions) as tracers of the large scale
latitudinal shear that distorts the convective envelope in this type of stars.
We also report definite evidence that this differential rotation is different
when estimated from cool spots or magnetic regions, and that it undergoes
temporal fluctuations of potentially large amplitude on a time scale of a few
years. We consider these results as further evidence that the dynamo processes
operating in these stars are distributed throughout the convective zone rather
than being confined at its base as in the Sun. By comparing our observations
with two very simple models of the differential rotation within the convective
zone, we obtain evidence that the internal rotation velocity field of the stars
we investigated is not like that of the Sun, and may resemble that we expect
for rapid rotators. We speculate that the changes in differential rotation
result from the dynamo processes (and from the underlying magnetic cycle) that
periodically converts magnetic energy into kinetic energy and vice versa. We
emphasise that the technique outlined in this paper corresponds to the first
practical method for investigating the large scale rotation velocity field
within convective zones of cool active stars, and offers several advantages
over asteroseismology for this particular purpose and this specific stellar
class.Comment: 14 pages, 4 figure
Survival of microorganisms in desert soil exposed to five years of continuous very high vacuum
Microorganism survivability in desert algal soil crust under continuous very high vacuu
Penetration and spreading of transverse jets of hydrogen in a Mach 2.72 airstream
Schlieren photography of flow distribution for transverse hydrogen jets from flat plate into Mach 2.72 airstrea
Method and system for in vivo measurement of bone tissue using a two level energy source
Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content
Magnetic fields and accretion flows on the classical T Tauri star V2129 Oph
From observations collected with the ESPaDOnS spectropolarimeter, we report
the discovery of magnetic fields at the surface of the mildly accreting
classical T Tauri star V2129 Oph. Zeeman signatures are detected, both in
photospheric lines and in the emission lines formed at the base of the
accretion funnels linking the disc to the protostar, and monitored over the
whole rotation cycle of V2129 Oph. We observe that rotational modulation
dominates the temporal variations of both unpolarized and circularly polarized
line profiles. We reconstruct the large-scale magnetic topology at the surface
of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to
be rather complex, with a dominant octupolar component and a weak dipole of
strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to
the rotation axis. The large-scale field is anchored in a pair of 2-kG unipolar
radial field spots located at high latitudes and coinciding with cool dark
polar spots at photospheric level. This large-scale field geometry is unusually
complex compared to those of non-accreting cool active subgiants with moderate
rotation rates. As an illustration, we provide a first attempt at modelling the
magnetospheric topology and accretion funnels of V2129 Oph using field
extrapolation. We find that the magnetosphere of V2129 Oph must extend to about
7R* to ensure that the footpoints of accretion funnels coincide with the
high-latitude accretion spots on the stellar surface. It suggests that the
stellar magnetic field succeeds in coupling to the accretion disc as far out as
the corotation radius, and could possibly explain the slow rotation of V2129
Oph. The magnetospheric geometry we derive produces X-ray coronal fluxes
typical of those observed in cTTSs.Comment: MNRAS, in press (18 pages, 17 figures
Can Democracies Cooperate with China on AI Research? Rebalancing AI Research Networks
China looms large in the global landscape of artificial intelligence (AI) research, development, and policymaking. Its talent, growing technological skill and innovation, and national investment in science and technology have made it a leader in AI.This working paper considers whether and to what extent international collaboration with China on AI can endure. In Part I, it presents the history of China's AI development and extraordinarily successful engagement with international research and development (R&D) and explains how this history has helped China become a global leader in the field. Part II shows how China has become embedded in international AI R&D networks, with China and the United States becoming each other's largest collaborator and China also a major collaborator with each of the other six countries participating in FCAI. Part III then provides an overview of the economic, ethical, and strategic issues that call into question whether such levels of collaboration on AI can continue, as well as the challenges and disadvantages of disconnecting the channels of collaboration. The analysis then looks at how engagement with China on AI R&D might evolve
Transition rates and nuclear structure changes in mirror nuclei 47Cr and 47V
Lifetime measurements in the mirror nuclei 47Cr and 47V were performed by
means of the Doppler-shift attenuation method using the multidetector array
EUROBALL, in conjunction with the ancillary detectors ISIS and the Neutron
Wall. The determined transition strengths in the yrast cascades are well
described by full pf shell model calculations.Comment: Latex2e, 11 pages, 3 figure
Steiner t-designs for large t
One of the most central and long-standing open questions in combinatorial
design theory concerns the existence of Steiner t-designs for large values of
t. Although in his classical 1987 paper, L. Teirlinck has shown that
non-trivial t-designs exist for all values of t, no non-trivial Steiner
t-design with t > 5 has been constructed until now. Understandingly, the case t
= 6 has received considerable attention. There has been recent progress
concerning the existence of highly symmetric Steiner 6-designs: It is shown in
[M. Huber, J. Algebr. Comb. 26 (2007), pp. 453-476] that no non-trivial
flag-transitive Steiner 6-design can exist. In this paper, we announce that
essentially also no block-transitive Steiner 6-design can exist.Comment: 9 pages; to appear in: Mathematical Methods in Computer Science 2008,
ed. by J.Calmet, W.Geiselmann, J.Mueller-Quade, Springer Lecture Notes in
Computer Scienc
- …