5,400 research outputs found
The Development and constitutionality of the 1971 Delaware Coastal Zone Act
In June 1971, the Delaware Legislature passed the Delaware Coastal Zone Act that barred heavy manufacturing industry from locating in an area one to six miles deep along the state\u27s 115 mile coastline. The act created a State Coastal Zone Industrial Control Board to hear appeals from decisions of the State Planner. In addition, the act prohibited the construction in the bay of marine terminals for the transshipment of liquid and solid bulk materials of any substance, (specifically aimed at offshore oil and coal transfer) from vessels to onshore facilities. The law\u27s immediate effect was to block several hundred million dollars worth of planned projects. The act proposes to protect these shoreline areas by zoning regulations designed to prevent pollution and to promote aesthetic values. This paper will examine the constitutionality of the Delaware Act in light of these two purposes and will examine other related issues bearing on the legality of the act
Development of a mobile technology system to measure shoulder range of motion
In patients with shoulder movement impairment, assessing and monitoring shoulder range of motion is important for determining the severity of impairments due to disease or injury and evaluating the effects of interventions. Current clinical methods of goniometry and visual estimation require an experienced user and suffer from low inter-rater reliability. More sophisticated techniques such as optical or electromagnetic motion capture exist but are expensive and restricted to a specialised laboratory environment.;Inertial measurement units (IMU), such as those within smartphones and smartwatches, show promise as tools bridge the gap between laboratory and clinical techniques and accurately measure shoulder range of motion during both clinic assessments and in daily life.;This study aims to develop an Android mobile application for both a smartphone and a smartwatch to assess shoulder range of motion. Initial performance characterisation of the inertial sensing capabilities of both a smartwatch and smartphone running the application was conducted against an industrial inclinometer, free-swinging pendulum and custom-built servo-powered gimbal.;An initial validation study comparing the smartwatch application with a universal goniometer for shoulder ROM assessment was conducted with twenty healthy participants. An impaired condition was simulated by applying kinesiology tape across the participants shoulder girdle. Agreement, intra and inter-day reliability were assessed in both the healthy and impaired states.;Both the phone and watch performed with acceptable accuracy and repeatability during static (within ±1.1°) and dynamic conditions where it was strongly correlated to the pendulum and gimbal data (ICC > 0.9). Both devices could perform accurately within optimal responsiveness range of angular velocities compliant with humerus movement during activities of daily living (frequency response of 377°/s and 358°/s for the phone and watch respectively).;The concurrent agreement between the watch and the goniometer was high in both healthy and impaired states (ICC > 0.8) and between measurement days (ICC > 0.8). The mean absolute difference between the watch and the goniometer were within the accepted minimal clinically important difference for shoulder movement (5.11° to 10.58°).;The results show promise for the use of the developed Android application to be used as a goniometry tool for assessment of shoulder ROM. However, the limits of agreement across all the tests fell out with the acceptable margin and further investigation is required to determine validity. Evaluation of validity in clinical impairment patients is also required to assess the feasibility of the use of the application in clinical practice.In patients with shoulder movement impairment, assessing and monitoring shoulder range of motion is important for determining the severity of impairments due to disease or injury and evaluating the effects of interventions. Current clinical methods of goniometry and visual estimation require an experienced user and suffer from low inter-rater reliability. More sophisticated techniques such as optical or electromagnetic motion capture exist but are expensive and restricted to a specialised laboratory environment.;Inertial measurement units (IMU), such as those within smartphones and smartwatches, show promise as tools bridge the gap between laboratory and clinical techniques and accurately measure shoulder range of motion during both clinic assessments and in daily life.;This study aims to develop an Android mobile application for both a smartphone and a smartwatch to assess shoulder range of motion. Initial performance characterisation of the inertial sensing capabilities of both a smartwatch and smartphone running the application was conducted against an industrial inclinometer, free-swinging pendulum and custom-built servo-powered gimbal.;An initial validation study comparing the smartwatch application with a universal goniometer for shoulder ROM assessment was conducted with twenty healthy participants. An impaired condition was simulated by applying kinesiology tape across the participants shoulder girdle. Agreement, intra and inter-day reliability were assessed in both the healthy and impaired states.;Both the phone and watch performed with acceptable accuracy and repeatability during static (within ±1.1°) and dynamic conditions where it was strongly correlated to the pendulum and gimbal data (ICC > 0.9). Both devices could perform accurately within optimal responsiveness range of angular velocities compliant with humerus movement during activities of daily living (frequency response of 377°/s and 358°/s for the phone and watch respectively).;The concurrent agreement between the watch and the goniometer was high in both healthy and impaired states (ICC > 0.8) and between measurement days (ICC > 0.8). The mean absolute difference between the watch and the goniometer were within the accepted minimal clinically important difference for shoulder movement (5.11° to 10.58°).;The results show promise for the use of the developed Android application to be used as a goniometry tool for assessment of shoulder ROM. However, the limits of agreement across all the tests fell out with the acceptable margin and further investigation is required to determine validity. Evaluation of validity in clinical impairment patients is also required to assess the feasibility of the use of the application in clinical practice
A Comparative Study of Qualitative and Quantitative Courses Across Three Educational Delivery Modalities
This study investigated differences in student satisfaction between qualitative and quantitative courses across three modalities: online, on ground and blended. With 21,000 respondents results indicate there are significant differences in student satisfaction between qualitative and quantitative courses. Satisfaction was higher for qualitative courses across all three modalities; it was highest for the online modify for both qualitative and quantitative courses
Novel configurations for pulsed optical parametric oscillators and their pump sources
The development of all-solid-state, diode-laser pumped neodymium (Nd) lasers and optical parametric oscillators (OPOs) is described, which realise practical sources of coherent radiation with a high degree of frequency agility, are efficient, reliable and potentially compact. A comparison of various neodymium doped host materials reveals yttrium lithium fluoride (YLF) to be an appropriate replacement for the more widely known host yttrium aluminium garnet (YAG) in diode-laser pumped devices. The development of an end-pumped Nd:YLF laser that utilises a 12-mJ, 60W, quasi-CW diode-laser bar is initially described. Multilongitudinal-mode, TEM00 pulse energies of greater than 2 mJ have been observed, with corresponding peak output powers in excess of 118 kW. The incorporation of a novel pre-lase Q-switching technique has realised single-longitudinal-mode peak powers in excess of 90 kW continuing to be achieved. Further, the development of a more powerful end- pumped Nd:YLF laser utilising 2, 3-bar diode-laser arrays, each providing 72-mJ of pump energy is described. In this case, Q-switched, multilongitudinal-mode, TEM00 pulse energies of greater than 11 mJ are reported, with the clear potential for increasing this to greater than 20 mJ, based on measured fixed-Q pulse energies of greater than 30 mJ. Complementing the development of these diode-laser pumped solid-state lasers is the development of optical parametric oscillators based on the nonlinear materials lithium triborate (LBO) and beta-barium borate (?-BBO). Pumped by the frequency up-converted (third harmonic) output of the mid laser, such optical parametric oscillators introduce extensive frequency agility spanning a spectral range from the deep blue (0.4 mum) to the mid-infrared (2.5 mum). Initially, the development of an LBO based device is reported, which in a type I critical phase- match (CPM) geometry has a measured oscillation threshold of 5 mJ, but through the introduction of interferometric, dispersive and injection seeding techniques made to operate on a single axial mode. Near transform limited linewidths are reported in devices which continue to have modest pump thresholds and broad tunability. The parametric generation of broad spectral bandwidths (polychromatic) by the use of suitable phase-matching geometries is also reported. Greater than 100 nm simultaneous bandwidth in the visible spectrum is generated in a collimated signal-wave from a novel, noncollinear phase-matching geometry in a beta-BBO optical parametric oscillator, which is pumped by the collimated output of frequency tripled diode-laser pumped Nd:YAG laser. The device is demonstrated to be efficient, having a similar pump threshold and efficiency to that of the well known collinear phase-matched tunable device, and to continue to encompass a degree of tunability allowing the large simultaneous bandwidth to be tuned across the entire visible spectrum. Dispersive cavity tuning of the optical parametric oscillator by the use of a Littrow-mounted grating or acousto-optic tuning filter, with a static crystal and pump configuration, is also described
Using a community of practice to evaluate falls prevention activity in a residential aged care organisation: a clinical audit
Objective This study evaluates whether a community of practice (CoP) could conduct a falls prevention clinical audit and identify gaps in falls prevention practice requiring action.
Methods Cross-sectional falls prevention clinical audits were conducted in 13 residential aged care (RAC) sites of a not-for-profit organisation providing care to a total of 779 residents. The audits were led by an operationalised CoP assisted by site clinical staff. A CoP is a group of people with a shared interest who get together to innovate for change. The CoP was made up of self-nominated staff representing all RAC sites and comprised of staff from various disciplines with a shared interest in falls prevention.
Results All 13 (100%) sites completed the audit. CoP conduct of the audit met identified criteria for an effective clinical audit. The priorities for improvement were identified as increasing the proportion of residents receiving vitamin D supplementation (mean 41.5%, s.d. 23.7) and development of mandatory falls prevention education for staff and a falls prevention policy, as neither was in place at any site. CoP actions undertaken included a letter to visiting GPs requesting support for vitamin D prescription, surveys of care staff and residents to inform falls education development, defining falls and writing a falls prevention policy.
Conclusion A CoP was able to effectively conduct an evidence-based falls prevention activity audit and identify gaps in practice. CoP members were well positioned, as site staff, to overcome barriers and facilitate action in falls prevention practice
Characterisation of tape-based carbon fibre thermoplastic discontinuous composites for energy absorption
Tape-based discontinuous composite is a relatively new type of composite material that offers improved mechanical properties for similar process-ability compared to Sheet Moulding Compound or Bulk Moulding Compound. This makes it potentially attractive for the automotive industry. In this paper, a thin-ply carbon fibre reinforced polypropylene-based discontinuous composite is studied. Mechanical tests are performed to obtain the tensile, compression and shear behaviour of the material. The energy absorption via tearing is also studied to assess the suitability of the material for energy absorption applications, such as crash-boxes. The tearing test results show a large degree of plastic deformation and an advancing damage front leading to higher specific energy absorption via tearing compared to conventional composite materials
Recommended from our members
An edaphic study of the Mt. Pisgah Arboretum water garden, Coast Fork of the Willamette River
Wetlands are widely identified as providing important and fundamental processes valuable for maintaining ecosystem health and diversity. Located in the southern Willamette Valley, the Mt. Pisgah Arboretum contains some valuable remaining wetland habitat along the Coast Fork of the Willamette River. One goal of the Mt. Pisgah Arboretum is "to promote conservation, research, and awareness of ecology". To reach this goal, the Arboretum has identified the importance of maintenance and enhancement activities for onsite native habitats, including riparian and wetland habitats. Before restoration or enhancement activities can begin, it is essential to develop an understanding of current environmental conditions. The purpose of this research was to document both the characteristics and distribution of hydric soils and the hydrology, and to provide insight into the patterns and processes associated with a floodplain wetland. In this study, transect sampling of edaphic features was used to identify the distribution of hydric soils and the hydrologic nature of the Mt. Pisgah Arboretum Water Garden. Soil morphological data for particle size, matrix colors and redox features were evaluated and compared with observations of ground water hydrology, river hydrology and precipitation. Five stratigraphic units were identified underlying the Water Garden. A basalt Bedrock unit underlies the uplands associated with Mt. Pisgah and extends at least part way beneath the floodplain. The Clay unit was formed above the Bedrock unit, with some degree of encroachment onto the floodplain. Below 153 m are floodplain sediments, cobbles at depth, then a sand layer and silty clay loam at the surface. The Cobble unit overlaps the Bedrock unit at its base and is most likely Pleistocene age alluvium. The Sand unit is of Holocene age and is found only in the abandoned thalweg, tapering off laterally in both directions across the ancient channels. Draped above this all and slightly overlapping the upland Bedrock and Clay units, is the SiCL unit. The SiCL unit represents Holocene age alluvium, fine material deposited by slow moving water and overbank deposition. The Water Garden soils reflect this mosaic of parent materials on a complex slope. Water Garden soils sometimes met saturation requirements for hydric soils, but they did not always meet hydric soil indicator requirements. The hydrological data suggest that the soils in depressional areas of the Water Garden occupy a zone where water is exchanged between saturated sediments surrounding the channel of the Coast Fork and the channel itself. The hydrology of depressional areas with both ponded surface water and near surface saturation was principally the result of hyporheic upwelling. The soils in these depressional areas tended to form redox concentrations that met hydric soil indicator criteria. Hillslope soils in concave footslope positions exhibited hydrology indicating two separate zones of saturation, one near surface, the other at depth, related to infiltration and accumulation of precipitation. Few redoximorphic features were observed in hillslope soils, and the one hydric soil indicator that was used at these locations did not require redox. Accurate and detailed delineation of hydric soils on this landscape and clear determination of dominant sources of saturation provided an improved understanding of the complex nature of the Water Garden wetland. Results of this study show that hydric soils occupy both depressional and hillslope positions within the Water Garden. Delineation of a soil as hydric or non hydric was facilitated by the use of hydric soil indicator criteria, morphology and hydrology. This analysis provides the managers of the Mt. Pisgah Arboretum with an accurate representation of where hydric soils currently exist and the respective sources of saturation. With this information, managers are better equipped to develop restoration and enhancement options that better reflect the current environmental conditions in the Water Garden
- …