12,269 research outputs found

    Asymptotic enumeration of 2-covers and line graphs

    Full text link
    In this paper we find asymptotic enumerations for the number of line graphs on nn-labelled vertices and for different types of related combinatorial objects called 2-covers. We find that the number of 2-covers, sns_n, and proper 2-covers, tnt_n, on [n][n] both have asymptotic growth sntnB2n2nexp(12log(2n/logn))=B2n2nlogn2n, s_n\sim t_n\sim B_{2n}2^{-n}\exp(-\frac12\log(2n/\log n))= B_{2n}2^{-n}\sqrt{\frac{\log n}{2n}}, where B2nB_{2n} is the 2n2nth Bell number, while the number of restricted 2-covers, unu_n, restricted, proper 2-covers on [n][n], vnv_n, and line graphs lnl_n, all have growth unvnlnB2n2nn1/2exp([12log(2n/logn)]2). u_n\sim v_n\sim l_n\sim B_{2n}2^{-n}n^{-1/2}\exp(-[\frac12\log(2n/\log n)]^2). In our proofs we use probabilistic arguments for the unrestricted types of 2-covers and and generating function methods for the restricted types of 2-covers and line graphs

    Asymptotics for incidence matrix classes

    Full text link
    We define {\em incidence matrices} to be zero-one matrices with no zero rows or columns. A classification of incidence matrices is considered for which conditions of symmetry by transposition, having no repeated rows/columns, or identification by permutation of rows/columns are imposed. We find asymptotics and relationships for the number of matrices with nn ones in these classes as nn\to\infty.Comment: updated and slightly expanded versio

    Asymptotic enumeration of incidence matrices

    Full text link
    We discuss the problem of counting {\em incidence matrices}, i.e. zero-one matrices with no zero rows or columns. Using different approaches we give three different proofs for the leading asymptotics for the number of matrices with nn ones as nn\to\infty. We also give refined results for the asymptotic number of i×ji\times j incidence matrices with nn ones.Comment: jpconf style files. Presented at the conference "Counting Complexity: An international workshop on statistical mechanics and combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda

    A note on higher-dimensional magic matrices

    Full text link
    We provide exact and asymptotic formulae for the number of unrestricted, respectively indecomposable, dd-dimensional matrices where the sum of all matrix entries with one coordinate fixed equals 2.Comment: AmS-LaTeX, 9 page
    corecore