4 research outputs found
Mapping more of terrestrial biodiversity for global conservation assessment
Global conservation assessments require information on the distribution of biodiversity across the planet. Yet this information is often mapped at a very coarse spatial resolution relative to the scale of most land-use and management decisions. Furthermore, such mapping tends to focus selectively on better-known elements of biodiversity (e.g. vertebrates). We introduce a new approach to describing and mapping the global distribution of terrestrial biodiversity that may help to alleviate these problems. This approach focuses on estimating spatial pattern in emergent properties of biodiversity (richness and compositional turnover) rather than distributions of individual species, making it well suited to lesser-known, yet highly diverse, biological groups. We have developed a global biodiversity model linking these properties to mapped ecoregions and fine-scale environmental surfaces. The model is being calibrated progressively using extensive biological data sets for a wide variety of taxa. We also describe an analytical approach to applying our model in global conservation assessments, illustrated with a preliminary analysis of the representativeness of the world's protected-area system. Our approach is intended to complement, not compete with, assessments based on individual species of particular conservation concern.SCOPUS: re.jinfo:eu-repo/semantics/publishe
Adaptive self-regulation: A process view of managerial effectiveness
This article describes a set of processes involved in attaining managerial effectiveness. These processes are components of an adaptive self-regulation framework. They involve the active management of constituencies' role expectations and performance opinions through standard-setting, discrepancy-detection, and discrepancy-reduction. These processes serve to enhance constitutents' opinions of the manager's effectiveness. Several social and contextual factors that either facilitate or inhibit managers' self-regulation efforts are identified and hypotheses to guide future empirical research are offered.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31730/1/0000669.pd
Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index
The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 Ă— 10-5, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 Ă— 10-06/Pfemales: 3.45 Ă— 10-07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation