1,010 research outputs found

    Role of lipid peroxidation and antioxidant enzymes in omega 3 fatty acids induced suppression of breast cancer xenograft growth in mice

    Get PDF
    BACKGROUND: Supplementing mice with high levels of dietary n-3 polyunsaturated fatty acids (PUFAs) increases the n-3 PUFAs in cell membranes, increases the susceptibility of the cells for lipid peroxidation (LPO) and decreases the growth rate of mammary and other tumors. However, the results of an earlier study indicated that a factor in addition to LPO was involved in the reduction in tumor growth in n-3 PUFAs fed mice. Athymic mice bearing MDA-MB-231 human breast carcinoma xenografts, were fed fish oil concentrate (FOC) or control diets, with and without supplemental Vitamin E (2000 IU /kg diet) and were sacrificed both before and after doxorubicin (DOX) treatment to evaluate factors involved in tumor growth suppression. RESULTS: Prior to DOX, basal LPO in the tumor of 3% FOC fed mice was slightly higher than in the control fed mice and was decreased in mice consuming FOC with vitamin E. Vitamin E suppressed the DOX induced increase in LPO in the tumors of control mice, however, vitamin E was not sufficient to suppress a DOX induced increase in LPO in the tumors of FOC fed mice. The mean growth rate of tumors of FOC fed mice was significantly less than the mean growth rate of the tumors of control mice. Multiple regression analyses indicated that suppression of glutathione peroxidase (GPX) activity by FOC prior to DOX therapy was more important than increased LPO as an explanation of tumor growth suppression. Tumor induced cachexia was decreased in mice consuming FOC. CONCLUSIONS: It appears that the increased sensitivity to DOX was related to an FOC induced reduction in GPX activity. FOC reduced tumor induced cachexia

    Quench Cooled Ice Crystal Imprint Size: A Micro-Method for Study of Macromolecular Hydration

    Get PDF
    Quench cooling (rate \u3e 4000°C/sec) of biological specimens limits growth of ice crystals by processes different from slow cooling methods. Quench cooling in liquid propane cooled in liquid nitrogen induced ice crystal segregation compartments, as imaged by scanning transmission electron micrographs of freeze-dried cryosections of tissues and protein solutions. The observed imprints of ice crystals were relatively small and roughly spherical. The size of these ice crystal imprints increased with distance from the specimen/quenchant surface. Beyond a depth of 150 microns the size of the imprints was constant but differed among subcellular compartments. The size of the imprints was found to be dependent on: water content, extent of hydration water and the degree of protein aggregation. Determination of extent of hydration water and degree of protein aggregation in protein solutions by measurements on the size of ice crystal imprints yields data in agreement with macroscopic methods. Thus ice crystal imprints give information about the interactions of macromolecules and water at a subcellular level of resolution

    Role of Lipid Peroxidation and Antioxidant Enzymes in Omega 3 Fatty Acids Induced Suppression of Breast Cancer Xenograft Growth in Mice

    Get PDF
    Background: Supplementing mice with high levels of dietary n-3 polyunsaturated fatty acids (PUFAs) increases the n-3 PUFAs in cell membranes, increases the susceptibility of the cells for lipid peroxidation (LPO) and decreases the growth rate of mammary and other tumors. However, the results of an earlier study indicated that a factor in addition to LPO was involved in the reduction in tumor growth in n-3 PUFAs fed mice. Athymic mice bearing MDA-MB-231 human breast carcinoma xenografts, were fed fish oil concentrate (FOC) or control diets, with and without supplemental Vitamin E (2000 IU /kg diet) and were sacrificed both before and after doxorubicin (DOX) treatment to evaluate factors involved in tumor growth suppression. Results: Prior to DOX, basal LPO in the tumor of 3% FOC fed mice was slightly higher than in the control fed mice and was decreased in mice consuming FOC with vitamin E. Vitamin E suppressed the DOX induced increase in LPO in the tumors of control mice, however, vitamin E was not sufficient to suppress a DOX induced increase in LPO in the tumors of FOC fed mice. The mean growth rate of tumors of FOC fed mice was significantly less than the mean growth rate of the tumors of control mice. Multiple regression analyses indicated that suppression of glutathione peroxidase (GPX) activity by FOC prior to DOX therapy was more important than increased LPO as an explanation of tumor growth suppression. Tumor induced cachexia was decreased in mice consuming FOC. Conclusions: It appears that the increased sensitivity to DOX was related to an FOC induced reduction in GPX activity. FOC reduced tumor induced cachexia

    Dietary Fish Oil Sensitizes A549 Lung Xenografts to Doxorubicin Chemotherapy

    Get PDF
    A549 xenografts were allowed to grow in nude mice to about 5 mm in diameter, then diets were changed to modified AIN-76 diets containing 19% wt/wt. fish oil (FO) or 20% wt./wt. com oil (CO). Ten days later dietary ferric citrate (0.3% wt./dry wt.) was added and doxoribicin (DOX) treatment (3.6 mg/kg i.v. each of the 5 days for 18 days) commenced. Treatment with DOX halted the growth of tumors in the CO fed mice. However, in those mice, which consumed FO or FO with ferric citrate, treatment with DOX caused significant tumor regression

    Dietary omega-3 fatty acids and ionizing irradiation on human breast cancer xenograft growth and angiogenesis

    Get PDF
    BACKGROUND: The effects of an omega-3 (n-3) fatty acid enriched diet alone and in combination with gamma irradiation (IR) therapy in nude mice bearing a human MDA-MB231 breast cancer xenograft were tested. The cancer cells were injected into the mammary fat pad of young female mice. Six weeks later, mice were randomly divided into two diet groups: 1) mice with 10% corn oil (rich in omega 6 fatty acids) in their food, 2) mice consuming a 10% fat diet that was enriched in n-3 fatty acids. After two weeks on the diet, treatment with 200 cGy of IR every second day for four treatments (total 800 cGy) was initiated on half of the mice from each diet group. Some mice in each of the 4 groups were euthanized 24 hours after the end of IR while the remaining mice were followed for 3 additional weeks. Tumor sections were stained for endothelial cells with CD31 and PAS and for hypoxia inducible factor 1α (HIF-α). RESULTS: The tumor cortex within 100 microns of the well-vascularized capsule had little vascularization. Blood vessels, capillaries, and endothelial pseudopods were found at areas greater than 100 microns from the capsule (subcortex). Mice on the corn oil diet and treated with IR 24 hours previously or non-irradiated mice fed the n-3 diet had tumors with fewer blood vessels in the subcortex and more endothelial pseudopods projecting into hypoxic (HIF- α positive) areas than did mice from the non-irradiated corn oil fed group. The tumor growth rate of mice that received IR or that were fed the n-3 fatty acid enriched diet was significantly slower than in the mice fed the 10% corn oil diet. Harmful side effects were found only in the IR treated mice. CONCLUSION: The omega-3 fatty acid enriched diet proved to be a safe means for retarding tumor growth and vascularization
    • …
    corecore