6 research outputs found
Study protocol of a randomized controlled trial to assess safety of teleconsultation compared with face-to-face consultation: the ECASeT study
BackgroundThe use of remote consultation modalities has exponentially grown in the past few years, particularly since the onset of the COVID-19 pandemic. Although a huge body of the literature has described the use of phone (tele) and video consultations, very few of the studies correspond to randomized controlled trials, and none of them has assessed the safety of these consultation modalities as the primary objective. The primary objective of this trial was to assess the safety of remote consultations (both video and teleconsultation) in the follow-up of patients in the hospital setting.MethodsMulticenter, randomized controlled trial being conducted in four centers of an administrative healthcare area in Catalonia (North-East Spain). Participants will be screened from all individuals, irrespective of age and sex, who require follow-up in outpatient consultations of any of the departments involved in the study. Eligibility criteria have been established based on the local guidelines for screening patients for remote consultation. Participants will be randomly allocated into one of the two study arms: conventional face-to-face consultation (control) and remote consultation, either teleconsultation or video consultation (intervention). Routine follow-up visits will be scheduled at a frequency determined by the physician based on the diagnostic and therapy of the baseline disease (the one triggering enrollment). The primary outcome will be the number of adverse reactions and complications related to the baseline disease. Secondary outcomes will include non-scheduled visits and hospitalizations, as well as usability features of remote consultations. All data will either be recorded in an electronic clinical report form or retrieved from local electronic health records. Based on the complications and adverse reaction rates reported in the literature, we established a target sample size of 1068 participants per arm. Recruitment started in May 2022 and is expected to end in May 2024.DiscussionThe scarcity of precedents on the assessment of remote consultation modalities using randomized controlled designs challenges making design decisions, including recruitment, selection criteria, and outcome definition, which are discussed in the manuscript.Trial registrationNCT05094180. The items of the WHO checklist for trial registration are available in Additional file 1. Registered on 24 November 2021
Telehealth model versus in-person standard care for persons with type 1 diabetes treated with multiple daily injections: an open-label randomized controlled trial
ObjectiveIncreasing evidence indicates that the telehealth (TH) model is noninferior to the in-person approach regarding metabolic control in type 1 diabetes (T1D) and offers advantages such as a decrease in travel time and increased accessibility for shorter/frequent visits. The primary aim of this study was to compare the change in glycated hemoglobin (HbA1c) at 6 months in T1D care in a rural area between TH and in-person visits.Research design and methodsRandomized controlled, open-label, parallel-arm study among adults with T1D. Participants were submitted to in-person visits at baseline and at months 3 and 6 (conventional group) or teleconsultation in months 1 to 4 plus 2 in-person visits (baseline and 6 months) (TH group). Mixed effects models estimated differences in HbA1c changes.ResultsFifty-five participants were included (29 conventional/26 TH). No significant differences in HbA1c between groups were found. Significant improvement in time in range (5.40, 95% confidence interval (CI): 0.43-10.38; p < 0.05) and in time above range (-6.34, 95% CI: -12.13- -0.55;p < 0.05) in the TH group and an improvement in the Diabetes Quality of Life questionnaire (EsDQoL) score (-7.65, 95% CI: -14.67 - -0.63; p < 0.05) were observed. In TH, the costs for the participants were lower.ConclusionsThe TH model is comparable to in-person visits regarding HbA1c levels at the 6-month follow-up, with significant improvement in some glucose metrics and health-related quality of life. Further studies are necessary to evaluate a more efficient timing of the TH visits
Telehealth model versus in-person standard care for persons with type 1 diabetes treated with multiple daily injections : an open-label randomized controlled trial
Increasing evidence indicates that the telehealth (TH) model is noninferior to the in-person approach regarding metabolic control in type 1 diabetes (T1D) and offers advantages such as a decrease in travel time and increased accessibility for shorter/frequent visits. The primary aim of this study was to compare the change in glycated hemoglobin (HbA) at 6 months in T1D care in a rural area between TH and in-person visits. Randomized controlled, open-label, parallel-arm study among adults with T1D. Participants were submitted to in-person visits at baseline and at months 3 and 6 (conventional group) or teleconsultation in months 1 to 4 plus 2 in-person visits (baseline and 6 months) (TH group). Mixed effects models estimated differences in HbA changes. Fifty-five participants were included (29 conventional/26 TH). No significant differences in HbA between groups were found. Significant improvement in time in range (5.40, 95% confidence interval (CI): 0.43-10.38; p < 0.05) and in time above range (-6.34, 95% CI: -12.13- -0.55;p < 0.05) in the TH group and an improvement in the Diabetes Quality of Life questionnaire (EsDQoL) score (-7.65, 95% CI: -14.67 - -0.63; p < 0.05) were observed. In TH, the costs for the participants were lower. The TH model is comparable to in-person visits regarding HbA levels at the 6-month follow-up, with significant improvement in some glucose metrics and health-related quality of life. Further studies are necessary to evaluate a more efficient timing of the TH visits
Telehealth model versus in-person standard care for persons with type 1 diabetes treated with multiple daily injections: an open-label randomized controlled trial
Objective: Increasing evidence indicates that the telehealth (TH) model is noninferior to the in-person approach regarding metabolic control in type 1 diabetes (T1D) and offers advantages such as a decrease in travel time and increased accessibility for shorter/frequent visits. The primary aim of this study was to compare the change in glycated hemoglobin (HbA1c) at 6 months in T1D care in a rural area between TH and in-person visits. Research design and methods: Randomized controlled, open-label, parallel-arm study among adults with T1D. Participants were submitted to in-person visits at baseline and at months 3 and 6 (conventional group) or teleconsultation in months 1 to 4 plus 2 in-person visits (baseline and 6 months) (TH group). Mixed effects models estimated differences in HbA1c changes. Results: Fifty-five participants were included (29 conventional/26 TH). No significant differences in HbA1c between groups were found. Significant improvement in time in range (5.40, 95% confidence interval (CI): 0.43-10.38; p < 0.05) and in time above range (-6.34, 95% CI: -12.13- -0.55;p < 0.05) in the TH group and an improvement in the Diabetes Quality of Life questionnaire (EsDQoL) score (-7.65, 95% CI: -14.67 - -0.63; p < 0.05) were observed. In TH, the costs for the participants were lower. Conclusions: The TH model is comparable to in-person visits regarding HbA1c levels at the 6-month follow-up, with significant improvement in some glucose metrics and health-related quality of life. Further studies are necessary to evaluate a more efficient timing of the TH visits
Study protocol of a randomized controlled trial to assess safety of teleconsultation compared with face-to-face consultation: the ECASeT study
Abstract Background The use of remote consultation modalities has exponentially grown in the past few years, particularly since the onset of the COVID-19 pandemic. Although a huge body of the literature has described the use of phone (tele) and video consultations, very few of the studies correspond to randomized controlled trials, and none of them has assessed the safety of these consultation modalities as the primary objective. The primary objective of this trial was to assess the safety of remote consultations (both video and teleconsultation) in the follow-up of patients in the hospital setting. Methods Multicenter, randomized controlled trial being conducted in four centers of an administrative healthcare area in Catalonia (North-East Spain). Participants will be screened from all individuals, irrespective of age and sex, who require follow-up in outpatient consultations of any of the departments involved in the study. Eligibility criteria have been established based on the local guidelines for screening patients for remote consultation. Participants will be randomly allocated into one of the two study arms: conventional face-to-face consultation (control) and remote consultation, either teleconsultation or video consultation (intervention). Routine follow-up visits will be scheduled at a frequency determined by the physician based on the diagnostic and therapy of the baseline disease (the one triggering enrollment). The primary outcome will be the number of adverse reactions and complications related to the baseline disease. Secondary outcomes will include non-scheduled visits and hospitalizations, as well as usability features of remote consultations. All data will either be recorded in an electronic clinical report form or retrieved from local electronic health records. Based on the complications and adverse reaction rates reported in the literature, we established a target sample size of 1068 participants per arm. Recruitment started in May 2022 and is expected to end in May 2024. Discussion The scarcity of precedents on the assessment of remote consultation modalities using randomized controlled designs challenges making design decisions, including recruitment, selection criteria, and outcome definition, which are discussed in the manuscript. Trial registration NCT05094180. The items of the WHO checklist for trial registration are available in Additional file 1. Registered on 24 November 2021