7 research outputs found

    Global diversity of enterococci and description of 18 novel species

    Get PDF
    Bacteria of the genus Enterococcus colonize the guts of diverse animals. Some species have acquired multiple antibiotic resistances on top of a high level of intrinsic resistance and have emerged as leading causes of hospital-associated infection. Although clinical isolates of enterococcal species E. faecalis and E. faecium have been studied with respect to their antibiotic resistances and infection pathogenesis, comparatively little is known about the biology of enterococci in their natural context of the guts of humans and other land animals, including arthropods and other invertebrates. Importantly, little is also known about the global pool of genes already optimized for expression in an enterococcal background with the potential to be readily acquired by hospital adapted strains of E. faecalis and E. faecium , known facile exchangers of mobile genetic elements. We therefore undertook a global study designed to reach into maximally diverse habitats, to establish a first approximation of the genetic diversity of enterococci on Earth. Presumptive enterococci from over 900 diverse specimens were initially screened by PCR using a specific reporter gene that we found to accurately reflect genomic diversity. The genomes of isolates exceeding an operationally set threshold for diversity were then sequenced in their entirety and analyzed. This provided us with data on the global occurrence of many known enterococcal species and their association with various hosts and ecologies and identified 18 novel species expanding the diversity of the genus Enterococcus by over 25%. The 18 novel enterococcal species harbor a diverse array of genes associated with toxins, detoxification, and resource acquisition that highlight the capacity of the enterococci to acquire and adapt novel functions from diverse gut environments. In addition to the discovery and characterization of new species, this expanded diversity permitted a higher resolution analysis of the phylogenetic structure of the Enterococcus genus, including identification of distinguishing features of its 4 deeply rooted clades and genes associated with range expansion such as B-vitamin biosynthesis and flagellar motility. Collectively, this work provides an unprecedentedly broad and deep view of the genus Enterococcus , along with new insights into their potential threat to human health

    Global diversity of enterococci and description of 18 previously unknown species

    Get PDF
    Enterococci are gut microbes of most land animals. Likely appearing first in the guts of arthropods as they moved onto land, they diversified over hundreds of millions of years adapting to evolving hosts and host diets. Over 60 enterococcal species are now known. Two species, Enterococcus faecalis and Enterococcus faecium, are common constituents of the human microbiome. They are also now leading causes of multidrug-resistant hospital-associated infection. The basis for host association of enterococcal species is unknown. To begin identifying traits that drive host association, we collected 886 enterococcal strains from widely diverse hosts, ecologies, and geographies. This identified 18 previously undescribed species expanding genus diversity by >25%. These species harbor diverse genes including toxins and systems for detoxification and resource acquisition. Enterococcus faecalis and E. faecium were isolated from diverse hosts highlighting their generalist properties. Most other species showed a more restricted distribution indicative of specialized host association. The expanded species diversity permitted the Enterococcus genus phylogeny to be viewed with unprecedented resolution, allowing features to be identified that distinguish its four deeply rooted clades, and the entry of genes associated with range expansion such as B-vitamin biosynthesis and flagellar motility to be mapped to the phylogeny. This work provides an unprecedentedly broad and deep view of the genus Enterococcus, including insights into its evolution, potential new threats to human health, and where substantial additional enterococcal diversity is likely to be found

    Staphylococcus aureus—Probing for Host Weakness?▿

    No full text

    Sequence Analysis of Enterococcus faecium Strain 10/96A (VanD4), the Original Vancomycin-Resistant E. faecium Strain in Brazil

    No full text
    Enterococcus faecium strain 10/96A (VanD4) was the first vancomycin-resistant enterococcus (VRE) isolated in Brazil. Subsequent Brazilian VRE strains have all had the VanA phenotype. Multilocus sequence typing showed that strain 10/96A was isolated sporadically, has a unique sequence type (ST 281), and was not the progenitor of the VRE strains isolated from hospital outbreaks in Brazil

    Antibacterial Activity of the Non-Cytotoxic Peptide (p-BthTX-I)2 and Its Serum Degradation Product against Multidrug-Resistant Bacteria

    No full text
    Antimicrobial peptides can be used systemically, however, their susceptibility to proteases is a major obstacle in peptide-based therapeutic development. In the present study, the serum stability of p-BthTX-I (KKYRYHLKPFCKK) and (p-BthTX-I)2, a p-BthTX-I disulfide-linked dimer, were analyzed by mass spectrometry and analytical high-performance liquid chromatography (HPLC). Antimicrobial activities were assessed by determining their minimum inhibitory concentrations (MIC) using cation-adjusted Mueller–Hinton broth. Furthermore, biofilm eradication and time-kill kinetics were performed. Our results showed that p-BthTX-I and (p-BthTX-I)2 were completely degraded after 25 min. Mass spectrometry showed that the primary degradation product was a peptide that had lost four lysine residues on its C-terminus region (des-Lys12/Lys13-(p-BthTX-I)2), which was stable after 24 h of incubation. The antibacterial activities of the peptides p-BthTX-I, (p-BthTX-I)2, and des-Lys12/Lys13-(p-BthTX-I)2 were evaluated against a variety of bacteria, including multidrug-resistant strains. Des-Lys12/Lys13-(p-BthTX-I)2 and (p-BthTX-I)2 degraded Staphylococcus epidermidis biofilms. Additionally, both the peptides exhibited bactericidal activities against planktonic S. epidermidis in time-kill assays. The emergence of bacterial resistance to a variety of antibiotics used in clinics is the ultimate challenge for microbial infection control. Therefore, our results demonstrated that both peptides analyzed and the product of proteolysis obtained from (p-BthTX-I)2 are promising prototypes as novel drugs to treat multidrug-resistant bacterial infections

    Discovery of a Novel Lineage Burkholderia cepacia ST 1870 Endophytically Isolated from Medicinal Polygala paniculata Which Shows Potent In Vitro Antileishmanial and Antimicrobial Effects

    No full text
    In this study, we report the isolation and identification of an endophytic strain of Burkholderia cepacia (COPS strain) associated with Polygala paniculata roots. Polygala plants are rich sources of promising microbiomes, of which the literature reports several pharmacological effects, such as trypanocidal, antinociceptive, anesthetic, anxiolytics, and anticonvulsant activities. B. cepacia COPS belongs to a new sequence type (ST 1870) and harbors a genome estimated in 8.3 Mbp which exhibits the aminoglycosides and beta-lactams resistance genes aph(3′)-IIa and blaTEM-116, respectively. Analysis performed using MLST, average nucleotide identity, and digital DNA-DNA hybridization support its species-level identification and reveals its novel housekeeping genes alleles gyrB, lepA, and phaC. The root endophyte B. cepacia COPS drew our attention from a group of 14 bacterial isolates during the primary screening for being potentially active against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Micrococcus luteus ATCC 9341, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231 and exhibited the broad-spectrum activity against phytopathogenic fungi. In addition, COPS strain showed production of protease, lipase, and esterase in solid media, and its natural product extract showed potent inhibition against fungal plant pathogens, such as Moniliophthora perniciosa, whose antagonism index (89.32%) exceeded the positive control (74.17%), whereas Sclerotinia sclerotiorum and Ceratocystis paradoxa showed high percentages of inhibition (85.53% and 82.69%, respectively). COPS crude extract also significantly inhibited S. epidermidis ATCC 35984, E. faecium ATCC 700221 (MIC values of 32 μg/mL for both), E. faecalis ATCC 29212 (64 μg/mL), and S. aureus ATCC 25923 (128 μg/mL). We observed moderate antagonistic activity against A. baumannii ATCC 19606 and E. coli ATCC 25922 (both at 512 μg/mL), as well as potent cytotoxic effects on Leishmania infantum and Leishmania major promastigote forms with 78.25% and 57.30% inhibition. In conclusion, this study presents for the first time the isolation of an endophytic B. cepacia strain associated with P. paniculata and enough evidence that these plants may be considered a rich source of microbes for the fight against neglected diseases
    corecore