1,612 research outputs found

    Extra-matrix Mg\u3csup\u3e2+\u3c/sup\u3e Limits Ca\u3csup\u3e2+\u3c/sup\u3e Uptake and Modulates Ca\u3csup\u3e2+\u3c/sup\u3e Uptake-independent Respiration and Redox State in Cardiac Isolated Mitochondria

    Get PDF
    Cardiac mitochondrial matrix (m) free Ca2+ ([Ca2+]m) increases primarily by Ca2+ uptake through the Ca2+ uniporter (CU). Ca2+ uptake via the CU is attenuated by extra-matrix (e) Mg2+ ([Mg2+]e). How [Ca2+]m is dynamically modulated by interacting physiological levels of [Ca2+]e and [Mg2+]e and how this interaction alters bioenergetics are not well understood. We postulated that as [Mg2+]e modulates Ca2+ uptake via the CU, it also alters bioenergetics in a matrix Ca2+–induced and matrix Ca2+–independent manner. To test this, we measured changes in [Ca2+]e, [Ca2+]m, [Mg2+]e and [Mg2+]m spectrofluorometrically in guinea pig cardiac mitochondria in response to added CaCl2 (0–0.6 mM; 1 mM EGTA buffer) with/without added MgCl2 (0–2 mM). In parallel, we assessed effects of added CaCl2 and MgCl2 on NADH, membrane potential (ΔΨm), and respiration. We found that \u3e0.125 mM MgCl2 significantly attenuated CU-mediated Ca2+ uptake and [Ca2+]m. Incremental [Mg2+]e did not reduce initial Ca2+uptake but attenuated the subsequent slower Ca2+ uptake, so that [Ca2+]m remained unaltered over time. Adding CaCl2 without MgCl2 to attain a [Ca2+]m from 46 to 221 nM enhanced state 3 NADH oxidation and increased respiration by 15 %; up to 868 nM [Ca2+]m did not additionally enhance NADH oxidation or respiration. Adding MgCl2 did not increase [Mg2+]m but it altered bioenergetics by its direct effect to decrease Ca2+ uptake. However, at a given [Ca2+]m, state 3 respiration was incrementally attenuated, and state 4 respiration enhanced, by higher [Mg2+]e. Thus, [Mg2+]e without a change in [Mg2+]m can modulate bioenergetics independently of CU-mediated Ca2+ transport

    Mg\u3csup\u3e2+\u3c/sup\u3e Differentially Regulates Two Modes of Mitochondrial Ca\u3csup\u3e2+\u3c/sup\u3e Uptake in Isolated Cardiac Mitochondria: Implications for Mitochondrial Ca\u3csup\u3e2+\u3c/sup\u3e Sequestration

    Get PDF
    The manner in which mitochondria take up and store Ca2+ remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca2+ uptake and a complex Ca2+ sequestration mechanism in mitochondria. But how Mg2+ regulates these different modes of Ca2+ uptake as well as mitochondrial Ca2+ sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca2+ by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca2+ uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca2+ uptake modes were differentially modulated by extra-matrix Mg2+. That is, Mg2+ markedly inhibited the slow mode of Ca2+ uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg2+ also inhibited Na+-dependent Ca2+ extrusion. The general Ca2+ binding properties of the mitochondrial Ca2+ sequestration system were reaffirmed and shown to be independent of the mode of Ca2+ uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg2+ hindered Ca2+ sequestration. Our results indicate that mitochondria exhibit different modes of Ca2+ uptake depending on the nature of exposure to extra-matrix Ca2+, which are differentially sensitive to Mg2+. The implications of these findings in cardiomyocytes are discussed

    Serviceability limit state of vibrations in under-deck cable-stayed bridges accounting for vehicle-structure interaction

    Get PDF
    Verification of the serviceability limit state of vibrations due to traffic live loads can be neglected in conventional types of concrete road bridges but becomes critical in the design of slender structures like under-deck cable-stayed bridges. The novelty of the work presented in this article is that an innovative vehicle-bridge interaction model is employed, in which realistic wheel dimensions of heavy trucks, road roughness profiles and the cross slope of the road are considered in nonlinear dynamic analyses of detailed three-dimensional finite element models. An extensive parametric study is conducted to explore the influence of the bridge parameters such as the longitudinal and transverse cable arrangement and the support conditions, in addition to the load modelling, road quality, the wheel size, the transverse road slope and the vehicle position and speed on the response of under-deck cable-stayed bridges. It has been observed that the vibrations perceived by pedestrians can be effectively reduced by concentrating the cable-system below the deck at the bridge centreline. The Fourier amplitude spectrum of the acceleration at critical positions along the deck proved that the response of under-deck cable-stayed bridges is not dominated only by contributions at the fundamental mode and, consequently, the conventional deflection-based methods are not valid to assess the users comfort. Instead, Vehicle-Bridge Interaction analyses are recommended for detailed design, considering the wheel dimensions if the pavement quality is bad and/or if the wheel radius is large. Finally, we verify through multiple approaches that the comfort of pedestrian users is more critical than that of vehicle users. However, the comfort of vehicle users is shown to be significantly affected when the road quality is poor
    • …
    corecore