1,612 research outputs found
Recommended from our members
Comparison of wind turbine tower failure modes under seismic and wind loads
This paper studies the structural responses and failure modes of a 1.5-MW horizontal-axis wind turbine under strong ground motions and wind loading. Ground motions were selected and scaled to match the two design response spectra given by the seismic code, and wind loads were generated considering tropical cyclone scenarios. Nonlinear dynamic time-history analyses were conducted and structural performances under wind loads as well as short- and long-period ground motions compared. The results show that under strong wind loads the collapse of the wind turbine tower is driven by the formation of a plastic hinge at the lower section of the tower. This area is also critical when the tower is subject to most ground motions. However, some short-period earthquakes trigger the collapse of the middle and upper parts of the tower due to the increased contribution of high-order vibration modes. Although long-period ground motions tend to result in greater structural responses, short-period earthquakes may cause brittle failure modes in which the full plastic hinge develops quickly in regions of the tower with only a moderate energy dissipation capacity. Based on these results, recommendations for future turbine designs are proposed
Extra-matrix Mg\u3csup\u3e2+\u3c/sup\u3e Limits Ca\u3csup\u3e2+\u3c/sup\u3e Uptake and Modulates Ca\u3csup\u3e2+\u3c/sup\u3e Uptake-independent Respiration and Redox State in Cardiac Isolated Mitochondria
Cardiac mitochondrial matrix (m) free Ca2+ ([Ca2+]m) increases primarily by Ca2+ uptake through the Ca2+ uniporter (CU). Ca2+ uptake via the CU is attenuated by extra-matrix (e) Mg2+ ([Mg2+]e). How [Ca2+]m is dynamically modulated by interacting physiological levels of [Ca2+]e and [Mg2+]e and how this interaction alters bioenergetics are not well understood. We postulated that as [Mg2+]e modulates Ca2+ uptake via the CU, it also alters bioenergetics in a matrix Ca2+–induced and matrix Ca2+–independent manner. To test this, we measured changes in [Ca2+]e, [Ca2+]m, [Mg2+]e and [Mg2+]m spectrofluorometrically in guinea pig cardiac mitochondria in response to added CaCl2 (0–0.6 mM; 1 mM EGTA buffer) with/without added MgCl2 (0–2 mM). In parallel, we assessed effects of added CaCl2 and MgCl2 on NADH, membrane potential (ΔΨm), and respiration. We found that \u3e0.125 mM MgCl2 significantly attenuated CU-mediated Ca2+ uptake and [Ca2+]m. Incremental [Mg2+]e did not reduce initial Ca2+uptake but attenuated the subsequent slower Ca2+ uptake, so that [Ca2+]m remained unaltered over time. Adding CaCl2 without MgCl2 to attain a [Ca2+]m from 46 to 221 nM enhanced state 3 NADH oxidation and increased respiration by 15 %; up to 868 nM [Ca2+]m did not additionally enhance NADH oxidation or respiration. Adding MgCl2 did not increase [Mg2+]m but it altered bioenergetics by its direct effect to decrease Ca2+ uptake. However, at a given [Ca2+]m, state 3 respiration was incrementally attenuated, and state 4 respiration enhanced, by higher [Mg2+]e. Thus, [Mg2+]e without a change in [Mg2+]m can modulate bioenergetics independently of CU-mediated Ca2+ transport
Mg\u3csup\u3e2+\u3c/sup\u3e Differentially Regulates Two Modes of Mitochondrial Ca\u3csup\u3e2+\u3c/sup\u3e Uptake in Isolated Cardiac Mitochondria: Implications for Mitochondrial Ca\u3csup\u3e2+\u3c/sup\u3e Sequestration
The manner in which mitochondria take up and store Ca2+ remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca2+ uptake and a complex Ca2+ sequestration mechanism in mitochondria. But how Mg2+ regulates these different modes of Ca2+ uptake as well as mitochondrial Ca2+ sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca2+ by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca2+ uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca2+ uptake modes were differentially modulated by extra-matrix Mg2+. That is, Mg2+ markedly inhibited the slow mode of Ca2+ uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg2+ also inhibited Na+-dependent Ca2+ extrusion. The general Ca2+ binding properties of the mitochondrial Ca2+ sequestration system were reaffirmed and shown to be independent of the mode of Ca2+ uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg2+ hindered Ca2+ sequestration. Our results indicate that mitochondria exhibit different modes of Ca2+ uptake depending on the nature of exposure to extra-matrix Ca2+, which are differentially sensitive to Mg2+. The implications of these findings in cardiomyocytes are discussed
Recommended from our members
Complete framework of wind-vehicle-bridge interaction with random road surfaces
The risk of vehicle accidents and discomfort under wind actions is key in the serviceability assessment of long-span bridges. This paper presents a complete wind-vehicle-bridge interaction (W-VBI) framework in which the pavement irregularities are simulated as random surfaces that include the bridge joints instead of traditional one-dimensional (1D) road profiles. The methodology includes a new approach to assess the safety and comfort of all the users of the bridge, including those in the vehicles and on the deck, and to account for the variability of the response. The application of the proposed W-VBI framework in the study of a long cable-stayed bridge demonstrated that the driving safety and the pedestrians’ comfort cannot be based on the analysis of a single record, and guidance is proposed to obtain results with statistical significance. Moreover, it is observed for the first time that 1D road irregularity models can significantly underpredict the risk of discomfort and of driving instabilities in bridges subjected to crosswinds. Finally, the direct connection between the quality of the road and the comfort in the vehicles is clearly established, which has potential implications on pavement monitoring programmes
Serviceability limit state of vibrations in under-deck cable-stayed bridges accounting for vehicle-structure interaction
Verification of the serviceability limit state of vibrations due to traffic live loads can be neglected in conventional types of concrete road bridges but becomes critical in the design of slender structures like under-deck cable-stayed bridges. The novelty of the work presented in this article is that an innovative vehicle-bridge interaction model is employed, in which realistic wheel dimensions of heavy trucks, road roughness profiles and the cross slope of the road are considered in nonlinear dynamic analyses of detailed three-dimensional finite element models. An extensive parametric study is conducted to explore the influence of the bridge parameters such as the longitudinal and transverse cable arrangement and the support conditions, in addition to the load modelling, road quality, the wheel size, the transverse road slope and the vehicle position and speed on the response of under-deck cable-stayed bridges. It has been observed that the vibrations perceived by pedestrians can be effectively reduced by concentrating the cable-system below the deck at the bridge centreline. The Fourier amplitude spectrum of the acceleration at critical positions along the deck proved that the response of under-deck cable-stayed bridges is not dominated only by contributions at the fundamental mode and, consequently, the conventional deflection-based methods are not valid to assess the users comfort. Instead, Vehicle-Bridge Interaction analyses are recommended for detailed design, considering the wheel dimensions if the pavement quality is bad and/or if the wheel radius is large. Finally, we verify through multiple approaches that the comfort of pedestrian users is more critical than that of vehicle users. However, the comfort of vehicle users is shown to be significantly affected when the road quality is poor
Recommended from our members
Serviceability limit state of vibrations in under-deck cable-stayed bridges accounting for vehicle-structure interaction
Verification of the serviceability limit state of vibrations due to traffic live loads can be neglected in conventional types of concrete road bridges but becomes critical in the design of slender structures like under-deck cable-stayed bridges. The novelty of the work presented in this article is that an innovative vehicle-bridge interaction model is employed, in which realistic wheel dimensions of heavy trucks, road roughness profiles and the cross slope of the road are considered in nonlinear dynamic analyses of detailed three-dimensional finite element models. An extensive parametric study is conducted to explore the influence of the bridge parameters such as the longitudinal and transverse cable arrangement and the support conditions, in addition to the load modelling, road quality, the wheel size, the transverse road slope and the vehicle position and speed on the response of under-deck cable-stayed bridges. It has been observed that the vibrations perceived by pedestrians can be effectively reduced by concentrating the cable-system below the deck at the bridge centreline. The Fourier amplitude spectrum of the acceleration at critical positions along the deck proved that the response of under-deck cable-stayed bridges is not dominated only by contributions at the fundamental mode and, consequently, the conventional deflection-based methods are not valid to assess the users comfort. Instead, Vehicle-Bridge Interaction analyses are recommended for detailed design, considering the wheel dimensions if the pavement quality is bad and/or if the wheel radius is large. Finally, we verify through multiple approaches that the comfort of pedestrian users is more critical than that of vehicle users. However, the comfort of vehicle users is shown to be significantly affected when the road quality is poor
- …