4 research outputs found
Characterizing the molecular and metabolic mechanisms of insecticide resistance in Anopheles gambiae in Faranah, Guinea.
BACKGROUND: In recent years, the scale-up of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) has greatly reduced malaria transmission. However, malaria remains a global public health concern with the majority of the disease burden in sub-Saharan Africa. Insecticide resistance is a growing problem among Anopheles vector populations, with potential implications for the continued effectiveness of available control interventions. Improved understanding of current resistance levels and underlying mechanisms is essential to design appropriate management strategies and to mitigate future selection for resistance. METHODS: Anopheles gambiae sensu lato mosquitoes were collected from three villages in Faranah Prefecture, Guinea and their levels of susceptibility to seven insecticides were measured using CDC resistance intensity bioassays. Synergist assays with piperonyl butoxide (PBO) were also undertaken to assess the role of elevated mixed-function oxidases in resistance. Five hundred and sixty-three mosquitoes underwent molecular characterization of vector species, presence of target site mutations (L1014F kdr, N1575Y and G119S Ace-1), Plasmodium falciparum infection, and relative expression of three metabolic genes (CYP6M2, CYP6P3 and GSTD3). RESULTS: In Faranah, resistance to permethrin and deltamethrin was observed, as well as possible resistance to bendiocarb. All assayed vector populations were fully susceptible to alpha-cypermethrin, pirimiphos-methyl, clothianidin and chlorfenapyr. Plasmodium falciparum infection was detected in 7.3% (37/508) of mosquitoes tested. The L1014F kdr mutation was found in 100% of a sub-sample of 60 mosquitoes, supporting its fixation in the region. The N1575Y mutation was identified in 20% (113/561) of individuals, with ongoing selection evidenced by significant deviations from Hardy-Weinberg equilibrium. The G119S Ace-1 mutation was detected in 62.1% (18/29) of mosquitoes tested and was highly predictive of bendiocarb bioassay survival. The metabolic resistance genes, CYP6M2, CYP6P3 and GSTD3, were found to be overexpressed in wild resistant and susceptible An. gambiae sensu stricto populations, compared to a susceptible G3 colony. Furthermore, CYP6P3 was significantly overexpressed in bendiocarb survivors, implicating its potential role in carbamate resistance in Faranah. CONCLUSIONS: Identification of intense resistance to permethrin and deltamethrin in Faranah, is of concern, as the Guinea National Malaria Control Programme (NMCP) relies exclusively on the distribution of pyrethroid-treated LLINs for vector control. Study findings will be used to guide current and future control strategies in the region
High-throughput barcoding method for the genetic surveillance of insecticide resistance and species identification in Anopheles gambiae complex malaria vectors.
Surveillance of malaria vector species and the monitoring of insecticide resistance are essential to inform malaria control strategies and support the reduction of infections and disease. Genetic barcoding of mosquitoes is a useful tool to assist the high-throughput surveillance of insecticide resistance, discriminate between sibling species and to detect the presence of Plasmodium infections. In this study, we combined multiplex PCR, custom designed dual indexing, and Illumina next generation sequencing for high throughput single nucleotide polymorphism (SNP)-profiling of four species from the Anopheles (An.) gambiae complex (An. gambiae sensu stricto, An. coluzzii, An. arabiensis and An. melas). By amplifying and sequencing only 14 genetic fragments (500 bp each), we were able to simultaneously detect Plasmodium infection; insecticide resistance-conferring SNPs in ace1, gste2, vgsc and rdl genes; the partial sequences of nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and intergenic spacers (IGS), Short INterspersed Elements (SINE), as well as mitochondrial genes (cox1 and nd4) for species identification and genetic diversity. Using this amplicon sequencing approach with the four selected An. gambiae complex species, we identified a total of 15 non-synonymous mutations in the insecticide target genes, including previously described mutations associated with resistance and two new mutations (F1525L in vgsc and D148E in gste2). Overall, we present a reliable and cost-effective high-throughput panel for surveillance of An. gambiae complex mosquitoes in malaria endemic regions
Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa
Background: Wolbachia , a common insect endosymbiotic bacterium that can influence pathogen transmission and manipulate host reproduction, has historically been considered absent from the Anopheles (An.) genera, but has recently been found in An. gambiae s.l. populations. As there are numerous Anopheles species that have the capacity to transmit malaria, we analysed a range of species to determine Wolbachia prevalence rates, characterise novel Wolbachia strains and determine any correlation between the presence of Plasmodium , Wolbachia and the competing endosymbiotic bacterium Asaia . Methods: Anopheles adult mosquitoes were collected from five malaria-endemic countries: Guinea, Democratic Republic of the Congo (DRC), Ghana, Uganda and Madagascar, between 2013 and 2017. Molecular analysis of samples was undertaken using quantitative PCR, Sanger sequencing, Wolbachia multilocus sequence typing (MLST) and high-throughput amplicon sequencing of the bacterial 16S rRNA gene. Results : Novel Wolbachia strains were discovered in five species: An. coluzzii , An. gambiae s.s., An. arabiensis , An. moucheti and An. species ‘A’, increasing the number of Anopheles species known to be naturally infected. Variable prevalence rates in different locations were observed and novel strains were phylogenetically diverse, clustering with Wolbachia supergroup B strains. We also provide evidence for resident strain variants within An . species ‘A’. Wolbachia is the dominant member of the microbiome in An. moucheti and An. species ‘A’, but present at lower densities in An. coluzzii . Interestingly, no evidence of Wolbachia/Asaia co-infections was seen and Asaia infection densities were also shown to be variable and location dependent. Conclusions: The important discovery of novel Wolbachia strains in Anopheles provides greater insight into the prevalence of resident Wolbachia strains in diverse malaria vectors. Novel Wolbachia strains (particularly high-density strains) are ideal candidate strains for transinfection to create stable infections in other Anopheles mosquito species, which could be used for population replacement or suppression control strategies
Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa.
Background: Wolbachia, a common insect endosymbiotic bacterium that can influence pathogen transmission and manipulate host reproduction, has historically been considered absent from the Anopheles (An.) genera, but has recently been found in An. gambiae s.l. populations in West Africa. As there are numerous Anopheles species that have the capacity to transmit malaria, we analysed a range of species across five malaria endemic countries to determine Wolbachia prevalence rates, characterise novel Wolbachia strains and determine any correlation between the presence of Plasmodium, Wolbachia and the competing bacterium Asaia. Methods: Anopheles adult mosquitoes were collected from five malaria-endemic countries: Guinea, Democratic Republic of the Congo (DRC), Ghana, Uganda and Madagascar, between 2013 and 2017. Molecular analysis was undertaken using quantitative PCR, Sanger sequencing, Wolbachia multilocus sequence typing (MLST) and high-throughput amplicon sequencing of the bacterial 16S rRNA gene. Results: Novel Wolbachia strains were discovered in five species: An. coluzzii, An. gambiae s.s., An. arabiensis, An. moucheti and An. species A, increasing the number of Anopheles species known to be naturally infected. Variable prevalence rates in different locations were observed and novel strains were phylogenetically diverse, clustering with Wolbachia supergroup B strains. We also provide evidence for resident strain variants within An. species A. Wolbachia is the dominant member of the microbiome in An. moucheti and An. species A but present at lower densities in An. coluzzii. Interestingly, no evidence of Wolbachia/Asaia co-infections was seen and Asaia infection densities were shown to be variable and location dependent. Conclusions: The important discovery of novel Wolbachia strains in Anopheles provides greater insight into the prevalence of resident Wolbachia strains in diverse malaria vectors. Novel Wolbachia strains (particularly high-density strains) are ideal candidate strains for transinfection to create stable infections in other Anopheles mosquito species, which could be used for population replacement or suppression control strategies