455 research outputs found
Proyecto de un sistema mecanico para el transporte y alimentaciĂłn al proceso de molienda de Carbon mineral usado como combustible industrial
OBJETIVO DE ESTA TESIS ES EL DESARROLLO DEL PROYECTO MECANICO DE SUN SISTEMA PARA LA TRANSPORTACION Y ALIMENTACION DEL CARBON DESDE LA SALA DE ALMACENAMIENTO HACIA LA MOLIENDA, CON UNA CAPACIDAD DE 100 TONELADAS POR HORA. TRATA ACERCA DEL CARBON VEGETAL COMO COMBUSTIBLE.
SE TRATAN LOS SITEMAS DE TRANSPORTACION, ALIMENTACION Y EL ENSAMBLE DE ESTOS, EN CADA SISTEMA HUBO QUE DISEĂAR CIERTOS EQUIPO. SE CONSIDERARON CARACTERISTICAS DEL MATERIAL.
SE DESCRIBE LOS REQUERIMIENTOS Y SISTEMAS PARA AUTOMATIZAR EL PROCESO DE TRANSPORTE Y ALIMENTACION. SE PRESENTA EL ANALISIS DE COSTO, COSTOS DE FABRICACION Y LA PUESTA EN MARCHA
Assessment of a New ROS1 Immunohistochemistry Clone (SP384) for the Identification of ROS1 Rearrangements in Patients with NonâSmall Cell Lung Carcinoma: the ROSING Study
Introduction: The ROS1 gene rearrangement has become an important biomarker in NSCLC. The College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology testing guidelines support the use of ROS1 immunohistochemistry (IHC) as a screening test, followed by confirmation with fluorescence in situ hybridization (FISH) or a molecular test in all positive results. We have evaluated a novel anti-ROS1 IHC antibody (SP384) in a large multicenter series to obtain real-world data.
Methods: A total of 43 ROS1 FISH-positive and 193 ROS1 FISH-negative NSCLC samples were studied. All specimens were screened by using two antibodies (clone D4D6 from Cell Signaling Technology and clone SP384 from Ventana Medical Systems), and the different interpretation criteria were compared with break-apart FISH (Vysis). FISH-positive samples were also analyzed with next-generation sequencing (Oncomine Dx Target Test Panel, Thermo Fisher Scientific).
Results: An H-score of 150 or higher or the presence of at least 70% of tumor cells with an intensity of staining of 2+ or higher by the SP384 clone was the optimal cutoff value (both with 93% sensitivity and 100% specificity). The D4D6 clone showed similar results, with an H-score of at least 100 (91% sensitivity and 100% specificity). ROS1 expression in normal lung was more frequent with use of the SP384 clone (p < 0.0001). The ezrin gene (EZR)-ROS1 variant was associated with membranous staining and an isolated green signal FISH pattern (p = 0.001 and p = 0.017, respectively).
Conclusions: The new SP384 ROS1 IHC clone showed excellent sensitivity without compromising specificity, so it is another excellent analytical option for the proposed testing algorithm
Comparative genomics of proteins involved in RNA nucleocytoplasmic export
Background: The establishment of the nuclear membrane resulted in the physical separation of transcription and translation, and presented early eukaryotes with a formidable challenge: how to shuttle RNA from the nucleus to the locus of protein synthesis. In prokaryotes, mRNA is translated as it is being synthesized, whereas in eukaryotes mRNA is synthesized and processed in the nucleus, and it is then exported to the cytoplasm. In metazoa and fungi, the different RNA species are exported from the nucleus by specialized pathways. For example, tRNA is exported by exportin-t in a RanGTP-dependent fashion. By contrast, mRNAs are associated to ribonucleoproteins (RNPs) and exported by an essential shuttling complex (TAP-p15 in human, Mex67-mtr2 in yeast) that transports them through the nuclear pore. The different RNA export pathways appear to be well conserved among members of Opisthokonta, the eukaryotic supergroup that includes Fungi and Metazoa. However, it is not known whether RNA export in the other eukaryotic supergroups follows the same export routes as in opisthokonts.
Methods: Our objective was to reconstruct the evolutionary history of the different RNA export pathways across eukaryotes. To do so, we screened an array of eukaryotic genomes for the presence of homologs of the proteins involved in RNA export in Metazoa and Fungi, using human and yeast proteins as queries.
Results: Our genomic comparisons indicate that the basic components of the RanGTP-dependent RNA pathways are conserved across eukaryotes, and thus we infer that these are traceable to the last eukaryotic common ancestor (LECA). On the other hand, several of the proteins involved in RanGTP-independent mRNA export pathways are less conserved, which would suggest that they represent innovations that appeared later in the evolution of eukaryotes.
Conclusions: Our analyses suggest that the LECA possessed the basic components of the different RNA export mechanisms found today in opisthokonts, and that these mechanisms became more specialized throughout eukaryotic evolution
The rise of noncommunicable diseases in Latin America and the Caribbean: challenges for public health policies
The health landscape in Latin America and the Caribbean is changing quickly. The region is undergoing a demographic and epidemiological transition in which health problems are highly concentrated on noncommunicable diseases (NCDs). In light of this, the region faces two main challenges: (1) develop cost-effective policies to prevent NCD risk factors, and (2) increase access to quality healthcare in a scenario in which a large share of the labor force is employed in the informal sector. This paper describes both alternative interventions to expand health insurance coverage and their trade-off with labor informality and moral hazard problems. The paper also focuses on obesity as a case example of an NCD, and emphasizes how lack of knowledge along with self-control problems would lead people to make suboptimal decisions related to food consumption, which may later manifest in obesity problems.Fil: Anauati, Maria Victoria. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de San AndrĂ©s; ArgentinaFil: Galiani, Sebastian. University of Maryland; Estados UnidosFil: Weinschelbaum, Federico. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de San AndrĂ©s; Argentin
High cell-free DNA is associated with disease progression, inflammasome activation and elevated levels of inflammasome-related cytokine IL-18 in patients with myelofibrosis
Myelofibrosis (MF) is a clonal hematopoietic stem cell disorder classified among chronic myeloproliferative neoplasms, characterized by exacerbated myeloid and megakaryocytic proliferation and bone marrow fibrosis. It is induced by driver (JAK2/CALR/MPL) and high molecular risk mutations coupled to a sustained inflammatory state that contributes to disease pathogenesis. Patient outcome is determined by stratification into risk groups and refinement of current prognostic systems may help individualize treatment decisions. Circulating cell-free (cf)DNA comprises short fragments of double-stranded DNA, which promotes inflammation by stimulating several pathways, including inflammasome activation, which is responsible for IL-1ÎČ and IL-18 maturation and release. In this work, we assessed the contribution of cfDNA as a marker of disease progression and mediator of inflammation in MF. cfDNA was increased in MF patients and higher levels were associated with adverse clinical outcome, a high-risk molecular profile, advanced disease stages and inferior overall survival, indicating its potential value as a prognostic marker. Cell-free DNA levels correlated with tumor burden parameters and markers of systemic inflammation. To mimic the effects of cfDNA, monocytes were stimulated with poly(dA:dT), a synthetic double-stranded DNA. Following stimulation, patient monocytes released higher amounts of inflammasome-processed cytokine, IL-18 to the culture supernatant, reflecting enhanced inflammasome function. Despite overexpression of cytosolic DNA inflammasome sensor AIM2, IL-18 release from MF monocytes was shown to rely mainly on the NLRP3 inflammasome, as it was prevented by NLRP3-specific inhibitor MCC950. Circulating IL-18 levels were increased in MF plasma, reflecting in vivo inflammasome activation, and highlighting the previously unrecognized involvement of this cytokine in MF cytokine network. Monocyte counts were higher in patients and showed a trend towards correlation with IL-18 levels, suggesting monocytes represent a source of circulating IL-18. The close correlation shown between IL-18 and cfDNA levels, together with the finding of enhanced DNA-triggered IL-18 release from monocytes, suggest that cfDNA promotes inflammation, at least in part, through inflammasome activation. This work highlights cfDNA, the inflammasome and IL-18 as additional players in the complex inflammatory circuit that fosters MF progression, potentially providing new therapeutic targets
Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at âs=2.76 TeV with ATLAS
The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb-1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity
Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at s â =8ââTeV with the ATLAS detector
Measurements of the top-antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-pT leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of 20.3ââfbâ1 from pp collisions at a center-of-mass energy sâ=8ââTeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the ttÂŻ system are performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied: AââC based on the selected leptons and AttÂŻC based on the reconstructed ttÂŻ final state. The inclusive asymmetries are measured in the full phase space to be AââC=0.008±0.006 and AttÂŻC=0.021±0.016, which are in agreement with the Standard Model predictions of AââC=0.0064±0.0003 and AttÂŻC=0.0111±0.0004
Genetic and biological characterization of a densovirus isolate that affects dengue virus infection
Brevidensoviruses have an encapsidated, single-stranded DNA genome that predominantly has a negative polarity. In recent years, they have received particular attention due to their potential role in the biological control of pathogenic arboviruses and to their unnoticed presence in cell cultures as contaminants. In addition, brevidensoviruses may also be useful as viral vectors. This study describes the first genetic and biological characterization of a mosquito densovirus that was isolated in Brazil; moreover, we examined the phylogenetic relationship between this isolate and the other brevidensoviruses. We further demonstrate that this densovirus has the potential to be used to biologically control dengue virus (DENV) infection with in vitro co-infection experiments. The present study provides evidence that this densovirus isolate is a fast-spreading virus that affects cell growth and DENV infection
- âŠ