10,962 research outputs found

    White dwarfs as test objects of Lorentz violations

    Full text link
    In the present work the thermodynamical properties of bosonic and fermionic gases are analyzed under the condition that a modified dispersion relation is present. This last condition implies a breakdown of Lorentz symmetry. The implications upon the condensation temperature will be studied, as well, as upon other thermodynamical variables such as specific heat, entropy, etc. Moreover, it will be argued that those cases entailing a violation of time reversal symmetry of the motion equations could lead to problems with the concept of entropy. Concerning the fermionic case it will be shown that Fermi temperature suffers a modification due to the breakdown of Lorentz symmetry. The results will be applied to white dwarfs and the consequences upon the Chandrasekhar mass--radius relation will be shown. The possibility of resorting to white dwarfs for the testing of modified dispersion relations is also addressed. It will be shown that the comparison of the current observations against the predictions of our model allows us to discard some values of one of the parameters appearing in the modifications of the dispersion relation.Comment: Accepted in Classical and Quantum Gravitatio

    Dimensional analysis and Rutherford Scattering

    Full text link
    Dimensional analysis, and in particular the Buckingham Π\Pi theorem is widely used in fluid mechanics. In this article we obtain an expression for the impact parameter from Buckingham's theorem and we compare our result with Rutherford's original discovery found in the early twentieth century

    Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: The effects of including recombination energy

    Get PDF
    Detached WD+MS PCEBs are perhaps the most suitable objects for testing predictions of close-compact binary-star evolution theories, in particular, CE evolution. The population of WD+MS PCEBs has been simulated by several authors in the past and compared with observations. However, most of those predictions did not take the possible contributions to the envelope ejection from additional sources of energy (mostly recombination energy) into account. Here we update existing binary population models of WD+MS PCEBs by assuming that a fraction of the recombination energy available within the envelope contributes to ejecting the envelope. We performed Monte Carlo simulations of 10^7 MS+MS binaries for 9 different models using standard assumptions for the initial primary mass function, binary separations, and initial-mass-ratio distribution and evolved these systems using the publicly available BSE code. Including a fraction of recombination energy leads to a clear prediction of a large number of long orbital period (>~10 days) systems mostly containing high-mass WDs. The fraction of systems with He-core WD primaries increases with the CE efficiency and the existence of very low-mass He WDs is only predicted for high values of the CE efficiency (>~0.5). All models predict on average longer orbital periods for PCEBs containing C/O-core WDs than for PCEBs containing He WDs. This effect increases with increasing values of both efficiencies. Longer periods after the CE phase are also predicted for systems containing more massive secondary stars. The initial-mass-ratio distribution affects the distribution of orbital periods, especially the distribution of secondary star masses. Our simulations, in combination with a large and homogeneous observational sample, can provide constraints on the values of the CE efficiencies, as well as on the initial-mass-ratio distribution for MS+MS binary stars.Comment: 11 pages, 10 figures, accepted for publication in A&

    Entropic Barriers, Frustration and Order: Basic Ingredients in Protein Folding

    Full text link
    We solve a model that takes into account entropic barriers, frustration, and the organization of a protein-like molecule. For a chain of size MM, there is an effective folding transition to an ordered structure. Without frustration, this state is reached in a time that scales as MλM^{\lambda}, with λ3\lambda\simeq 3. This scaling is limited by the amount of frustration which leads to the dynamical selectivity of proteins: foldable proteins are limited to 300\sim 300 monomers; and they are stable in {\it one} range of temperatures, independent of size and structure. These predictions explain generic properties of {\it in vivo} proteins.Comment: 4 pages, 4 Figures appended as postscript fil

    Some Aspects of Minimal Length Quantum Mechanics

    Full text link
    String theory, quantum geometry, loop quantum gravity and black hole physics all indicate the existence of a minimal observable length on the order of Planck length. This feature leads to a modification of Heisenberg uncertainty principle. Such a modified Heisenberg uncertainty principle is referred as gravitational uncertainty principle(GUP) in literatures. This proposal has some novel implications on various domains of theoretical physics. Here, we study some consequences of GUP in the spirit of Quantum mechanics. We consider two problem: a particle in an one-dimensional box and momentum space wave function for a "free particle". In each case we will solve corresponding perturbational equations and compare the results with ordinary solutions.Comment: 9 pages, one eps figur

    Quantum mechanical description of Stern-Gerlach experiments

    Get PDF
    The motion of neutral particles with magnetic moments in an inhomogeneous magnetic field is described in a quantum mechanical framework. The validity of the semi-classical approximations which are generally used to describe these phenomena is discussed. Approximate expressions for the evolution operator are derived and compared to the exact calculations. Focusing and spin-flip phenomena are predicted. The reliability of Stern-Gerlach experiments to measure spin projections is assessed in this framework.Comment: 12 pages, 7 eps figures included, revtex, submitted to PR

    Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: comparison with the SDSS DR7 observed sample

    Get PDF
    Detached white dwarf + main sequence (WD+MS) systems represent the simplest population of post-common envelope binaries (PCEBs). Since the ensemble properties of this population carries important information about the characteristics of the common-envelope (CE) phase, it deserves close scrutiny. However, most population synthesis studies do not fully take into account the effects of the observational selection biases of the samples used to compare with the theoretical simulations. Here we present the results of a set of detailed Monte Carlo simulations of the population of WD+MS binaries in the Sloan Digital Sky Survey (SDSS) Data Release 7. We used up-to-date stellar evolutionary models, a complete treatment of the Roche lobe overflow episode, and a full implementation of the orbital evolution of the binary systems. Moreover, in our treatment we took into account the selection criteria and all the known observational biases. Our population synthesis study allowed us to make a meaningful comparison with the available observational data. In particular, we examined the CE efficiency, the possible contribution of internal energy, and the initial mass ratio distribution (IMRD) of the binary systems. We found that our simulations correctly reproduce the properties of the observed distribution of WD+MS PCEBs. In particular, we found that once the observational biases are carefully taken into account, the distribution of orbital periods and of masses of the WD and MS stars can be correctly reproduced for several choices of the free parameters and different IMRDs, although models in which a moderate fraction (<=10%) of the internal energy is used to eject the CE and in which a low value of CE efficiency is used (<=0.3) seem to fit better the observational data. We also found that systems with He-core WDs are over-represented in the observed sample, due to selection effects.Comment: 15 pages, 7 figures, accepted for publication in A&

    Continuous distribution of frequencies and deformed dispersion relations

    Full text link
    The possibilities that, in the realm of the detection of the so--called deformed dispersion relation, a light source with a continuous distribution of frequencies offers is discussed. It will be proved that the presence of finite coherence length entails the emergence of a new term in the interference pattern. This is a novel trait, which renders a new possibility in the quest for bounds associated with these deformed dispersion relations.Comment: Accepted in Classical and Quantum Gravit
    corecore