155 research outputs found
Quantitative proteome landscape of the NCI-60 cancer cell lines
Here we describe a proteomic data resource for the NCI-60 cell lines generated by pressure cycling technology and SWATH mass spectrometry. We developed the DIA-expert software to curate and visualize the SWATH data, leading to reproducible detection of over 3,100 SwissProt proteotypic proteins and systematic quantification of pathway activities. Stoichiometric relationships of interacting proteins for DNA replication, repair, the chromatin remodeling NuRD complex, β-catenin, RNA metabolism, and prefoldins are more evident than that at the mRNA level. The data are available in CellMiner (discover.nci.nih.gov/cellminercdb and discover.nci.nih.gov/cellminer), allowing casual users to test hypotheses and perform integrative, cross-database analyses of multi-omic drug response correlations for over 20,000 drugs. We demonstrate the value of proteome data in predicting drug response for over 240 clinically relevant chemotherapeutic and targeted therapies. In summary, we present a novel proteome resource for the NCI-60, together with relevant software tools, and demonstrate the benefit of proteome analyses
A Mathematical Model of Mitotic Exit in Budding Yeast: The Role of Polo Kinase
Cell cycle progression in eukaryotes is regulated by periodic activation and inactivation of a family of cyclin–dependent kinases (Cdk's). Entry into mitosis requires phosphorylation of many proteins targeted by mitotic Cdk, and exit from mitosis requires proteolysis of mitotic cyclins and dephosphorylation of their targeted proteins. Mitotic exit in budding yeast is known to involve the interplay of mitotic kinases (Cdk and Polo kinases) and phosphatases (Cdc55/PP2A and Cdc14), as well as the action of the anaphase promoting complex (APC) in degrading specific proteins in anaphase and telophase. To understand the intricacies of this mechanism, we propose a mathematical model for the molecular events during mitotic exit in budding yeast. The model captures the dynamics of this network in wild-type yeast cells and 110 mutant strains. The model clarifies the roles of Polo-like kinase (Cdc5) in the Cdc14 early anaphase release pathway and in the G-protein regulated mitotic exit network
A Dynamical Model of Oocyte Maturation Unveils Precisely Orchestrated Meiotic Decisions
Maturation of vertebrate oocytes into haploid gametes relies on two consecutive meioses without intervening DNA replication. The temporal sequence of cellular transitions driving eggs from G2 arrest to meiosis I (MI) and then to meiosis II (MII) is controlled by the interplay between cyclin-dependent and mitogen-activated protein kinases. In this paper, we propose a dynamical model of the molecular network that orchestrates maturation of Xenopus laevis oocytes. Our model reproduces the core features of maturation progression, including the characteristic non-monotonous time course of cyclin-Cdks, and unveils the network design principles underlying a precise sequence of meiotic decisions, as captured by bifurcation and sensitivity analyses. Firstly, a coherent and sharp meiotic resumption is triggered by the concerted action of positive feedback loops post-translationally activating cyclin-Cdks. Secondly, meiotic transition is driven by the dynamic antagonism between positive and negative feedback loops controlling cyclin turnover. Our findings reveal a highly modular network in which the coordination of distinct regulatory schemes ensures both reliable and flexible cell-cycle decisions
Perturbation Centrality and Turbine: A Novel Centrality Measure Obtained Using a Versatile Network Dynamics Tool
Analysis of network dynamics became a focal point to understand and predict
changes of complex systems. Here we introduce Turbine, a generic framework
enabling fast simulation of any algorithmically definable dynamics on very
large networks. Using a perturbation transmission model inspired by
communicating vessels, we define a novel centrality measure: perturbation
centrality. Hubs and inter-modular nodes proved to be highly efficient in
perturbation propagation. High perturbation centrality nodes of the Met-tRNA
synthetase protein structure network were identified as amino acids involved in
intra-protein communication by earlier studies. Changes in perturbation
centralities of yeast interactome nodes upon various stresses well
recapitulated the functional changes of stressed yeast cells. The novelty and
usefulness of perturbation centrality was validated in several other model,
biological and social networks. The Turbine software and the perturbation
centrality measure may provide a large variety of novel options to assess
signaling, drug action, environmental and social interventions. The Turbine
algorithm is available at: http://www.turbine.linkgroup.huComment: 21 pages, 4 figues, 1 table, 58 references + a Supplement of 52
pages, 10 figures, 9 tables and 39 references; Turbine algorithm is available
at: http://www.turbine.linkgroup.h
The mEPN scheme: an intuitive and flexible graphical system for rendering biological pathways
<p>Abstract</p> <p>Background</p> <p>There is general agreement amongst biologists about the need for good pathway diagrams and a need to formalize the way biological pathways are depicted. However, implementing and agreeing how best to do this is currently the subject of some debate.</p> <p>Results</p> <p>The modified Edinburgh Pathway Notation (mEPN) scheme is founded on a notation system originally devised a number of years ago and through use has now been refined extensively. This process has been primarily driven by the author's attempts to produce process diagrams for a diverse range of biological pathways, particularly with respect to immune signaling in mammals. Here we provide a specification of the mEPN notation, its symbols, rules for its use and a comparison to the proposed Systems Biology Graphical Notation (SBGN) scheme.</p> <p>Conclusions</p> <p>We hope this work will contribute to the on-going community effort to develop a standard for depicting pathways and will provide a coherent guide to those planning to construct pathway diagrams of their biological systems of interest.</p
Comprehensive Analysis Reveals Dynamic and Evolutionary Plasticity of Rab GTPases and Membrane Traffic in Tetrahymena thermophila
Cellular sophistication is not exclusive to multicellular organisms, and unicellular eukaryotes can resemble differentiated animal cells in their complex network of membrane-bound structures. These comparisons can be illuminated by genome-wide surveys of key gene families. We report a systematic analysis of Rabs in a complex unicellular Ciliate, including gene prediction and phylogenetic clustering, expression profiling based on public data, and Green Fluorescent Protein (GFP) tagging. Rabs are monomeric GTPases that regulate membrane traffic. Because Rabs act as compartment-specific determinants, the number of Rabs in an organism reflects intracellular complexity. The Tetrahymena Rab family is similar in size to that in humans and includes both expansions in conserved Rab clades as well as many divergent Rabs. Importantly, more than 90% of Rabs are expressed concurrently in growing cells, while only a small subset appears specialized for other conditions. By localizing most Rabs in living cells, we could assign the majority to specific compartments. These results validated most phylogenetic assignments, but also indicated that some sequence-conserved Rabs were co-opted for novel functions. Our survey uncovered a rare example of a nuclear Rab and substantiated the existence of a previously unrecognized core Rab clade in eukaryotes. Strikingly, several functionally conserved pathways or structures were found to be associated entirely with divergent Rabs. These pathways may have permitted rapid evolution of the associated Rabs or may have arisen independently in diverse lineages and then converged. Thus, characterizing entire gene families can provide insight into the evolutionary flexibility of fundamental cellular pathways
Robust simplifications of multiscale biochemical networks
<p>Abstract</p> <p>Background</p> <p>Cellular processes such as metabolism, decision making in development and differentiation, signalling, etc., can be modeled as large networks of biochemical reactions. In order to understand the functioning of these systems, there is a strong need for general model reduction techniques allowing to simplify models without loosing their main properties. In systems biology we also need to compare models or to couple them as parts of larger models. In these situations reduction to a common level of complexity is needed.</p> <p>Results</p> <p>We propose a systematic treatment of model reduction of multiscale biochemical networks. First, we consider linear kinetic models, which appear as "pseudo-monomolecular" subsystems of multiscale nonlinear reaction networks. For such linear models, we propose a reduction algorithm which is based on a generalized theory of the limiting step that we have developed in <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Second, for non-linear systems we develop an algorithm based on dominant solutions of quasi-stationarity equations. For oscillating systems, quasi-stationarity and averaging are combined to eliminate time scales much faster and much slower than the period of the oscillations. In all cases, we obtain robust simplifications and also identify the critical parameters of the model. The methods are demonstrated for simple examples and for a more complex model of NF-<it>κ</it>B pathway.</p> <p>Conclusion</p> <p>Our approach allows critical parameter identification and produces hierarchies of models. Hierarchical modeling is important in "middle-out" approaches when there is need to zoom in and out several levels of complexity. Critical parameter identification is an important issue in systems biology with potential applications to biological control and therapeutics. Our approach also deals naturally with the presence of multiple time scales, which is a general property of systems biology models.</p
Spatial Bistability Generates hunchback Expression Sharpness in the Drosophila Embryo
During embryonic development, the positional information provided by concentration gradients of maternal factors directs pattern formation by providing spatially dependent cues for gene expression. In the fruit fly, Drosophila melanogaster, a classic example of this is the sharp on–off activation of the hunchback (hb) gene at midembryo, in response to local concentrations of the smooth anterior–posterior Bicoid (Bcd) gradient. The regulatory region for hb contains multiple binding sites for the Bcd protein as well as multiple binding sites for the Hb protein. Some previous studies have suggested that Bcd is sufficient for properly sharpened Hb expression, yet other evidence suggests a need for additional regulation. We experimentally quantified the dynamics of hb gene expression in flies that were wild-type, were mutant for hb self-regulation or Bcd binding, or contained an artificial promoter construct consisting of six Bcd and two Hb sites. In addition to these experiments, we developed a reaction–diffusion model of hb transcription, with Bcd cooperative binding and hb self-regulation, and used Zero Eigenvalue Analysis to look for multiple stationary states in the reaction network. Our model reproduces the hb developmental dynamics and correctly predicts the mutant patterns. Analysis of our model indicates that the Hb sharpness can be produced by spatial bistability, in which hb self-regulation produces two stable levels of expression. In the absence of self-regulation, the bistable behavior vanishes and Hb sharpness is disrupted. Bcd cooperative binding affects the position where bistability occurs but is not itself sufficient for a sharp Hb pattern. Our results show that the control of Hb sharpness and positioning, by hb self-regulation and Bcd cooperativity, respectively, are separate processes that can be altered independently. Our model, which matches the changes in Hb position and sharpness observed in different experiments, provides a theoretical framework for understanding the data and in particular indicates that spatial bistability can play a central role in threshold-dependent reading mechanisms of positional information
Construction of a large scale integrated map of macrophage pathogen recognition and effector systems
<p>Abstract</p> <p>Background</p> <p>In an effort to better understand the molecular networks that underpin macrophage activation we have been assembling a map of relevant pathways. Manual curation of the published literature was carried out in order to define the components of these pathways and the interactions between them. This information has been assembled into a large integrated directional network and represented graphically using the modified Edinburgh Pathway Notation (mEPN) scheme.</p> <p>Results</p> <p>The diagram includes detailed views of the toll-like receptor (TLR) pathways, other pathogen recognition systems, NF-kappa-B, apoptosis, interferon signalling, MAP-kinase cascades, MHC antigen presentation and proteasome assembly, as well as selected views of the transcriptional networks they regulate. The integrated pathway includes a total of 496 unique proteins, the complexes formed between them and the processes in which they are involved. This produces a network of 2,170 nodes connected by 2,553 edges.</p> <p>Conclusions</p> <p>The pathway diagram is a navigable visual aid for displaying a consensus view of the pathway information available for these systems. It is also a valuable resource for computational modelling and aid in the interpretation of functional genomics data. We envisage that this work will be of value to those interested in macrophage biology and also contribute to the ongoing Systems Biology community effort to develop a standard notation scheme for the graphical representation of biological pathways.</p
Qualitative modelling via constraint programming
Qualitative modelling is a technique integrating the fields of theoretical computer science, artificial intelligence and the physical and biological sciences. The aim is to be able to model the behaviour of systems without estimating parameter values and fixing the exact quantitative dynamics. Traditional applications are the study of the dynamics of physical and biological systems at a higher level of abstraction than that obtained by estimation of numerical parameter values for a fixed quantitative model. Qualitative modelling has been studied and implemented to varying degrees of sophistication in Petri nets, process calculi and constraint programming. In this paper we reflect on the strengths and weaknesses of existing frameworks, we demonstrate how recent advances in constraint programming can be leveraged to produce high quality qualitative models, and we describe the advances in theory and technology that would be needed to make constraint programming the best option for scientific investigation in the broadest sense
- …