34 research outputs found

    Topology and interaction effects in one-dimensional systems

    Get PDF
    With the discovery of the integer quantum Hall effect by von Klitzing and collaborators in 1980, the mathematical field of topology entered the world of condensed matter physics. Almost three decades later, this eventually led to the theoretical prediction and the experimental realization of many intriguing topological materials and topology-based devices. In this Ph.D. thesis, we will study the interplay between topology and another key topic in condensed matter physics, namely the study of inter-particle interactions in many-body systems. This interplay is analyzed from two different perspectives. Firstly, we studied how the presence of electron-electron interactions affects single-electron injection into a couple of counter-propagating one-dimensional edge channels. The latter appear at the edges of topologically non-trivial systems in the quantum spin Hall regime and they can also be engineered by exploiting the integer quantum Hall effect. Because of inter-channel interactions, the injected electron splits up into a couple of counter-propagating fractional excitations. Here, we carefully study and discuss their properties by means of an analytical approach based on the Luttinger liquid theory and the bosonization method. Our results are quite relevant in the context of the so-called electron quantum optics, a fast developing field which deeply exploits the topological protection of one-dimensional edge states to study the coherent propagation of electrons in solid-state devices. As an aside, we also showed that similar analytical techniques can also be used to study the time-resolved dynamics of a Luttinger liquid subject to a sudden change of the interaction strength, a protocol known as quantum quench which is gaining more and more attention, especially within the cold-atoms community. Secondly, we study how inter-particle interactions can enhance the topological properties of strictly one-dimensional fermionic systems. More precisely, the starting point is the seminal Kitaev chain, a free-fermionic lattice model which hosts exotic Majorana zero-energy modes at its ends. The latter are extremely relevant in the context of topological quantum computation because of their non-Abelian anyonic exchange statistics. Here we show that, by properly adding electron-electron interactions to the Kitaev chain, it is possible to obtain lattice models which feature zero-energy parafermionic modes, an even more intriguing generalization of Majoranas. To this end, we develop at first an exact mapping between Z4 parafermions and ordinary fermions on a lattice. We subsequently exploit this mapping to analytically obtain an exactly solvable fermionic model hosting zero-energy parafermions. We study their properties and numerically investigate their signatures and robustness even when parameters are tuned away from the exactly solvable point

    Transient dynamics of spin-polarized injection in helical Luttinger liquids

    Full text link
    We analyze the time evolution of spin-polarized electron wave packets injected into the edge states of a two-dimensional topological insulator. In the presence of electron interactions, the system is described as a helical Luttinger liquid and injected electrons fractionalize. However, because of the presence of metallic detectors, no evidences of fractionalization are encoded in dc measurements, and in this regime the system do not show deviations from its non-interacting behavior. Nevertheless, we show that the helical Luttinger liquid nature emerges in the transient dynamics, where signatures of charge/spin fractionalization can be clearly identified.Comment: Contribution for the special issue of Physica E in memory of Markus B\"uttiker. 4 figure

    Time-resolved pure spin fractionalization and spin-charge separation in helical Luttinger liquid based devices

    Get PDF
    Helical Luttinger liquids, appearing at the edge of two-dimensional topological insulators, represent a new paradigm of one-dimensional systems, where peculiar quantum phenomena can be investigated. Motivated by recent experiments on charge fractionalization, we propose a setup based on helical Luttinger liquids that allows to time-resolve, in addition to charge fractionalization, also spin-charge separation and pure spin fractionalization. This is due to the combined presence of spin-momentum locking and interactions. We show that electric time-resolved measurements can reveal both charge and spin properties, avoiding the need of magnetic materials. Although challenging, the proposed setup could be achieved with nowadays technologies, promoting helical liquids as interesting playgrounds to explore the effects of interactions in one dimension.Comment: main text + supplementary materia

    Novel architectures for noise-resilient superconducting qubits

    Full text link
    Great interest revolves around the development of new strategies to efficiently store and manipulate quantum information in a robust and decoherence-free fashion. Several proposals have been put forward to encode information into qubits that are simultaneously insensitive to relaxation and to dephasing processes. Among all, given their versatility and high-degree of control, superconducting qubits have been largely investigated in this direction. Here, we present a survey on the basic concepts and ideas behind the implementation of novel superconducting circuits with intrinsic protection against decoherence at a hardware level. In particular, the main focus is on multi-mode superconducting circuits, the paradigmatic example being the so-called 0π0-\pi circuit. We report on their working principle and possible physical implementations based on conventional Josephson elements, presenting recent experimental realizations, discussing both fabrication methods and characterizations.Comment: 47 pages, review articl

    Non-equilibrium effects on charge and energy partitioning after an interaction quench

    Full text link
    Charge and energy fractionalization are among the most intriguing features of interacting onedimensional fermion systems. In this work we determine how these phenomena are modified in the presence of an interaction quench. Charge and energy are injected into the system suddenly after the quench, by means of tunneling processes with a non-interacting one-dimensional probe. Here, we demonstrate that the system settles to a steady state in which the charge fractionalization ratio is unaffected by the pre-quenched parameters. On the contrary, due to the post-quench nonequilibrium spectral function, the energy partitioning ratio is strongly modified, reaching values larger than one. This is a peculiar feature of the non-equilibrium dynamics of the quench process and it is in sharp contrast with the non-quenched case, where the ratio is bounded by one.Comment: 12 pages, 4 figure

    Parafermion braiding in fractional quantum Hall edge states with a finite chemical potential

    Get PDF
    Parafermions are non-Abelian anyons which generalize Majorana fermions and hold great promise for topological quantum computation. We study the braiding of Z2n parafermions which have been predicted to emerge as localized zero modes in fractional quantum Hall systems at filling factor ν=1/n (n odd). Using a combination of bosonization and refermionization, we calculate the energy splitting as a function of distance and chemical potential for a pair of parafermions separated by a gapped region. Braiding of parafermions in quantum Hall edge states can be implemented by repeated fusion and nucleation of parafermion pairs. We simulate the conventional braiding protocol of parafermions numerically, taking into account the finite separation and finite chemical potential. We show that a nonzero chemical potential poses challenges for the adiabaticity of the braiding process because it leads to accidental crossings in the spectrum. To remedy this, we propose an improved braiding protocol which avoids those degeneracies
    corecore