97 research outputs found
Carbon footprint of U.S. beef compared to global beef
The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311
Environmental effects on water intake and water intake prediction in growing beef cattle
Water is an essential nutrient, but there are few recent studies that evaluate how much water individual beef cattle consume and how environmental factors affect an individualâs water intake (WI). Most studies have focused on WI of whole pens rather than WI of individual animals. Thus, the objective of this study was to evaluate the impact of environmental parameters on individual-animal WI across different seasons and develop prediction equations to estimate WI, including within different environments and management protocols. Individual daily feed intake and WI records were collected on 579 crossbred steers for a 70-d period following a 21-d acclimation period for feed and water bunk training. Steers were fed in 5 separate groups over a 3-yr period from May 2014 to March 2017. Individual weights were collected every 14 d and weather data were retrieved from the Oklahoma Mesonetâs Stillwater station. Differences in WI as a percent of body weight (WI%) were analyzed accounting for average temperature (TAVG), relative humidity (HAVG), solar radiation (SRAD), and wind speed (WSPD). Seasonal (summer vs. winter) and management differences (ad libitum vs. slick bunk) were examined. Regression analysis was utilized to generate 5 WI prediction equations (overall, summer, winter, slick, and ad libitum). There were significant (P \u3c 0.05) differences in WI between all groups when no environmental parameters were included in the model. Although performance was more similar after accounting for all differences in weather variables, significant (P \u3c 0.05) seasonal and feed management differences were still observed for WI%, but were less than 0.75% of steer body weight. The best linear predictors of daily WI (DWI) were dry mater intake (DMI), metabolic body weights (MWTS), TAVG, SRAD, HAVG, and WSPD. Slight differences in the coefficient of determinations for the various models were observed for the summer (0.34), winter (0.39), ad libitum (0.385), slick bunk (0.41), and overall models (0.40). Based on the moderate R2 values for the WI prediction equations, individual DWI can be predicted with reasonable accuracy based on the environmental conditions that are present, MWTS, and DMI consumed, but substantial variation exists in individual animal WI that is not accounted for by these models
Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state
A search for the rare decays and is performed in a data set corresponding to an integrated luminosity of 3.0 fb collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/ and with muon pairs that do not originate from a resonance are considered. The first observation of the decay and the first evidence of the decay are obtained and the branching fractions are measured to be and , where the third uncertainty is due to the branching fraction of the decay , used as a normalisation.A search for the rare decays Bs0âÏ+ÏâÎŒ+ÎŒâ and B0âÏ+ÏâÎŒ+ÎŒâ is performed in a data set corresponding to an integrated luminosity of 3.0 fbâ1 collected by the LHCb detector in protonâproton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5â1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0âÏ+ÏâÎŒ+ÎŒâ and the first evidence of the decay B0âÏ+ÏâÎŒ+ÎŒâ are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0âÏ+ÏâÎŒ+ÎŒâ)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))Ă10â8 and B(B0âÏ+ÏâÎŒ+ÎŒâ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))Ă10â8 , where the third uncertainty is due to the branching fraction of the decay B0âJ/Ï(âÎŒ+ÎŒâ)Kâ(892)0(âK+Ïâ) , used as a normalisation.A search for the rare decays Bs0âÏ+ÏâÎŒ+ÎŒâ and B0âÏ+ÏâÎŒ+ÎŒâ is performed in a data set corresponding to an integrated luminosity of 3.0 fbâ1 collected by the LHCb detector in protonâproton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5â1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0âÏ+ÏâÎŒ+ÎŒâ and the first evidence of the decay B0âÏ+ÏâÎŒ+ÎŒâ are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0âÏ+ÏâÎŒ+ÎŒâ)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))Ă10â8 and B(B0âÏ+ÏâÎŒ+ÎŒâ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))Ă10â8 , where the third uncertainty is due to the branching fraction of the decay B0âJ/Ï(âÎŒ+ÎŒâ)Kâ(892)0(âK+Ïâ) , used as a normalisation.A search for the rare decays and is performed in a data set corresponding to an integrated luminosity of 3.0 fb collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/ and with muon pairs that do not originate from a resonance are considered. The first observation of the decay and the first evidence of the decay are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be and , where the third uncertainty is due to the branching fraction of the decay , used as a normalisation
Angular analysis of the B-0 -> K*(0) e(+) e(-) decay in the low-q(2) region
An angular analysis of the decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared () interval between 0.002 and 1.120. The angular observables and which are related to the polarisation and to the lepton forward-backward asymmetry, are measured to be and , where the first uncertainty is statistical and the second systematic. The angular observables and which are sensitive to the photon polarisation in this range, are found to be and . The results are consistent with Standard Model predictions.An angular analysis of the B â K^{*}^{0} e e decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 fb, collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q) interval between 0.002 and 1.120 GeV /c. The angular observables F and A which are related to the K^{*}^{0} polarisation and to the lepton forward-backward asymmetry, are measured to be F = 0.16 ± 0.06 ± 0.03 and A â=â0.10â±â0.18â±â0.05, where the first uncertainty is statistical and the second systematic. The angular observables A and A which are sensitive to the photon polarisation in this q range, are found to be A â=âââ0.23â±â0.23â±â0.05 and A â=â0.14â±â0.22â±â0.05. The results are consistent with Standard Model predictions.An angular analysis of the decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared () interval between 0.002 and 1.120. The angular observables and which are related to the polarisation and to the lepton forward-backward asymmetry, are measured to be and , where the first uncertainty is statistical and the second systematic. The angular observables and which are sensitive to the photon polarisation in this range, are found to be and . The results are consistent with Standard Model predictions
Measurement of the Z plus b-jet cross-section in pp collisions at root s=7 TeV in the forward region
The associated production of a Z boson or an off-shell photon with a bottom quark in the forward region is studied using proton-proton collisions at a centre-of-mass energy of . The Z bosons are reconstructed in the final state from muons with a transverse momentum larger than , while two transverse momentum thresholds are considered for jets ( and ). Both muons and jets are reconstructed in the pseudorapidity range , and \sigma(\text{\text{Z}/\gamma^*(\mu^{+}\mu^{-})+b-jet}) = 167 \pm 47 (\text{stat}) \pm 29 (\text{syst}) \pm 6 (\text{lumi}) {\,{fb}} for {p_{\rm T}}(jet)
Precise measurements of the properties of the B-1(5721)(0,+) and B-2*(5747)(0,+) states and observation of B-+,B-0 pi(-,+) mass structures
Invariant mass distributions of and combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to of collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the and states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range - MeV in both and combinations. The structures are consistent with the presence of four excited B mesons, labelled and , whose masses and widths are obtained under different hypotheses for their quantum numbers.Invariant mass distributions of B Ï and B Ï combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0 fb of pp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B(5721) and B(5747) states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 5850-6000 MeV in both B Ï and B Ï combinations. The structures are consistent with the presence of four excited B mesons, labelled B (5840) and B (5960), whose masses and widths are obtained under different hypotheses for their quantum numbers.Invariant mass distributions of B+pi- and B0pi+ combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0 fb-1 of pp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B_1(5721)^(0,+) and B_2*(5747)^(0,+) states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 5850--6000 MeV in both B+pi- and B0pi+ combinations. The structures are consistent with the presence of four excited B mesons, labelled B_J(5840)^(0,+) and B_J(5960)^(0,+), whose masses and widths are obtained under different hypotheses for their quantum numbers
Measurement of the lifetime of the meson using the decay mode
The difference in total widths between the and mesons is measured using 3.0fb of data collected by the LHCb experiment in 7 and 8 TeV centre-of-mass energy proton-proton collisions at the LHC. Through the study of the time evolution of and decays, the width difference is measured to be where the first uncertainty is statistical and the second systematic. The known lifetime of the meson is used to convert this to a precise measurement of the lifetime, where the first uncertainty is statistical and the second systematic.The difference in total widths between the B+ c and B+ mesons is measured using 3.0 fbâ1 of data collected by the LHCb experiment in 7 and 8 TeV centre-of-mass energy proton-proton collisions at the LHC. Through the study of the time evolution of B+ c â J/ÏÏ+ and B+ â J/ÏK+ decays, the width difference is measured to be âΠ⥠ÎB + c â ÎB+ = 4.46 ± 0.14 ± 0.07 mmâ1 c, where the first uncertainty is statistical and the second systematic. The known lifetime of the B+ meson is used to convert this to a precise measurement of the B+ c lifetime, ÏB + c = 513.4 ± 11.0 ± 5.7 fs, where the first uncertainty is statistical and the second systematic.The difference in total widths between the Bc+ and B+ mesons is measured using a data sample corresponding to an integrated luminosity of 3.0 fbâ1 collected by the LHCb experiment in 7 and 8 TeV centre-of-mass energy protonâproton collisions at the LHC. Through the study of the time evolution of Bc+âJ/ÏÏ+ and B+âJ/ÏK+ decays, the width difference is measured to be ÎÎâĄÎBc+âÎB+=4.46±0.14±0.07 mmâ1c, where the first uncertainty is statistical and the second systematic. The known lifetime of the B+ meson is used to convert this to a precise measurement of the Bc+ lifetime, ÏBc+=513.4±11.0±5.7 fs, where the first uncertainty is statistical and the second is systematic.The difference in total widths between the Bc+ and B+ mesons is measured using a data sample corresponding to an integrated luminosity of 3.0 fbâ1 collected by the LHCb experiment in 7 and 8 TeV centre-of-mass energy protonâproton collisions at the LHC. Through the study of the time evolution of Bc+âJ/ÏÏ+ and B+âJ/ÏK+ decays, the width difference is measured to be ÎÎâĄÎBc+âÎB+=4.46±0.14±0.07 mmâ1c, where the first uncertainty is statistical and the second systematic. The known lifetime of the B+ meson is used to convert this to a precise measurement of the Bc+ lifetime, ÏBc+=513.4±11.0±5.7 fs, where the first uncertainty is statistical and the second is systematic
Measurement of asymmetries and polarisation fractions in decays
An angular analysis of the decay is performed using collisions corresponding to an integrated luminosity of collected by the LHCb experiment at a centre-of-mass energy TeV. A combined angular and mass analysis separates six helicity amplitudes and allows the measurement of the longitudinal polarisation fraction for the decay. A large scalar contribution from the and resonances is found, allowing the determination of additional asymmetries. Triple product and direct asymmetries are determined to be compatible with the Standard Model expectations. The branching fraction is measured to be
Search for long-lived particles decaying to jet pairs
A search is presented for long-lived particles with a mass between 25 and 50 GeV and a lifetime between 1 and 200 ps in a sample of proton-proton collisions at a centre-of-mass energy of =7 TeV, corresponding to an integrated luminosity of 0.62 fb, collected by the LHCb detector. The particles are assumed to be pair-produced by the decay of a Standard Model-like Higgs boson. The experimental signature of the long-lived particle is a displaced vertex with two associated jets. No excess above the background is observed and limits are set on the production cross-section as a function of the long-lived particle mass and lifetime.A search is presented for long-lived particles with a mass between 25 and 50 and a lifetime between 1 and 200 in a sample of protonâproton collisions at a centre-of-mass energy of  TeV, corresponding to an integrated luminosity of 0.62 , collected by the LHCb detector. The particles are assumed to be pair-produced by the decay of a standard model-like Higgs boson. The experimental signature of the long-lived particle is a displaced vertex with two associated jets. No excess above the background is observed and limits are set on the production cross-section as a function of the long-lived particle mass and lifetime.A search is presented for long-lived particles with a mass between 25 and 50 GeV and a lifetime between 1 and 200 ps in a sample of proton-proton collisions at a centre-of-mass energy of TeV, corresponding to an integrated luminosity of 0.62 fb, collected by the LHCb detector. The particles are assumed to be pair-produced by the decay of a Standard Model-like Higgs boson. The experimental signature of the long-lived particle is a displaced vertex with two associated jets. No excess above the background is observed and limits are set on the production cross-section as a function of the long-lived particle mass and lifetime
Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar
The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range GeV/c. The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy TeV using data corresponding to an integrated luminosity of 0.7 fb, and at TeV using 2.0 fb. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be MeV/c.The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range . The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy using data corresponding to an integrated luminosity of 0.7Â fb , and at using 2.0Â fb . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be .The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range GeV/c. The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy TeV using data corresponding to an integrated luminosity of 0.7 fb, and at TeV using 2.0 fb. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be MeV/c
- âŠ