52 research outputs found

    Priority Setting for Occupational Cancer Prevention

    Get PDF
    Background: Selecting priority occupational carcinogens is important for cancer prevention efforts; however, standardized selection methods are not available. The objective of this paper was to describe the methods used by CAREX Canada in 2015 to establish priorities for preventing occupational cancer, with a focus on exposure estimation and descriptive profiles. Methods: Four criteria were used in an expert assessment process to guide carcinogen prioritization: (1) the likelihood of presence and/or use in Canadian workplaces; (2) toxicity of the substance (strength of evidence for carcinogenicity and other health effects); (3) feasibility of producing a carcinogen profile and/or an occupational estimate; and (4) special interest from the public/scientific community. Carcinogens were ranked as high, medium or low priority based on specific conditions regarding these criteria, and stakeholder input was incorporated. Priorities were set separately for the creation of new carcinogen profiles and for new occupational exposure estimates. Results: Overall, 246 agents were reviewed for inclusion in the occupational priorities list. For carcinogen profile generation, 103 were prioritized (11 high, 33 medium, and 59 low priority), and 36 carcinogens were deemed priorities for occupational exposure estimation (13 high, 17 medium, and 6 low priority). Conclusion: Prioritizing and ranking occupational carcinogens is required for a variety o

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    CAREX Canada: an enhanced model for assessing occupational carcinogen exposure

    No full text
    This article has been accepted for publication in Occup Environ Med 2015;72:64-71 following peer review and can also be viewed on the journal’s website at https://dx.doi.org/10.1136/oemed-2014-102286.Objectives: To estimate the numbers of workers exposed to known and suspected occupational carcinogens in Canada, building on the methods of CARcinogen EXposure (CAREX) projects in the European Union (EU). Methods: CAREX Canada consists of estimates of the prevalence and level of exposure to occupational carcinogens. CAREX Canada includes occupational agents evaluated by the International Agency for Research on Cancer as known, probable or possible human carcinogens that were present and feasible to assess in Canadian workplaces. A Canadian Workplace Exposure Database was established to identify the potential for exposure in particular industries and occupations, and to create exposure level estimates among priority agents, where possible. CAREX EU data were reviewed for relevance to the Canadian context and the proportion of workers likely to be exposed by industry and occupation in Canada was assigned using expert assessment and agreement by a minimum of two occupational hygienists. These proportions were used to generate prevalence estimates by linkage with the Census of Population for 2006, and these estimates are available by industry, occupation, sex and province. Results: CAREX Canada estimated the number of workers exposed to 44 known, probable and suspected carcinogens. Estimates of levels of exposure were further developed for 18 priority agents. Common exposures included night shift work (1.9 million exposed), solar ultraviolet radiation exposure (1.5 million exposed) and diesel engine exhaust (781 000 exposed). Conclusions: A substantial proportion of Canadian workers are exposed to known and suspected carcinogens at work

    Priority Setting for Occupational Cancer Prevention

    No full text
    Background: Selecting priority occupational carcinogens is important for cancer prevention efforts; however, standardized selection methods are not available. The objective of this paper was to describe the methods used by CAREX Canada in 2015 to establish priorities for preventing occupational cancer, with a focus on exposure estimation and descriptive profiles. Methods: Four criteria were used in an expert assessment process to guide carcinogen prioritization: (1) the likelihood of presence and/or use in Canadian workplaces; (2) toxicity of the substance (strength of evidence for carcinogenicity and other health effects); (3) feasibility of producing a carcinogen profile and/or an occupational estimate; and (4) special interest from the public/scientific community. Carcinogens were ranked as high, medium or low priority based on specific conditions regarding these criteria, and stakeholder input was incorporated. Priorities were set separately for the creation of new carcinogen profiles and for new occupational exposure estimates. Results: Overall, 246 agents were reviewed for inclusion in the occupational priorities list. For carcinogen profile generation, 103 were prioritized (11 high, 33 medium, and 59 low priority), and 36 carcinogens were deemed priorities for occupational exposure estimation (13 high, 17 medium, and 6 low priority). Conclusion: Prioritizing and ranking occupational carcinogens is required for a variety of purposes, including research, resource allocation at different jurisdictional levels, calculations of occupational cancer burden, and planning of CAREX-type projects in different countries. This paper outlines how this process was achieved in Canada; this may provide a model for other countries and jurisdictions as a part of occupational cancer prevention efforts. Keywords: cancer prevention, carcinogen exposure, occupational healt

    Use and Reliability of Exposure Assessment Methods in Occupational Case-Control Studies in the General Population: Past, Present, and Future

    No full text
    Introduction: Retrospective occupational exposure assessment has been challenging in case-control studies in the general population. We aimed to review (i) trends of different assessment methods used in the last 40 years and (ii) evidence of reliability for various assessment methods. Methods: Two separate literature reviews were conducted. We first reviewed all general population cancer case-control studies published from 1975 to 2016 to summarize the exposure assessment approach used. For the second review, we systematically reviewed evidence of reliability for all methods observed in the first review. Results: Among the 299 studies included in the first review, the most frequently used assessment methods were self-report/assessment (n = 143 studies), case-by-case expert assessment (n = 139), and job-exposure matrices (JEMs; n = 82). Usage trends for these methods remained relatively stable throughout the last four decades. Other approaches, such as the application of algorithms linking questionnaire responses to expert-assigned exposure estimates and modelling of exposure with historical measurement data, appeared in 21 studies that were published after 2000. The second review retrieved 34 comparison studies examining methodological reliability. Overall, we observed slightly higher median kappa agreement between exposure estimates from different expert assessors (~0.6) than between expert estimates and exposure estimates from self-reports (~0.5) or JEMs (~0.4). However, reported reliability measures were highly variable for different methods and agents. Limited evidence also indicates newer methods, such as assessment using algorithms and measurement-calibrated quantitative JEMs, may be as reliable as traditional methods. Conclusion: The majority of current research assesses exposures in the population with similar methods as studies did decades ago. Though there is evidence for the development of newer approaches, more concerted effort is needed to better adopt exposure assessment methods with more transparency, reliability, and efficiency

    Priority Setting for Occupational Cancer Prevention

    No full text
    Background: Selecting priority occupational carcinogens is important for cancer prevention efforts; however, standardized selection methods are not available. The objective of this paper was to describe the methods used by CAREX Canada in 2015 to establish priorities for preventing occupational cancer, with a focus on exposure estimation and descriptive profiles. Methods: Four criteria were used in an expert assessment process to guide carcinogen prioritization: (1) the likelihood of presence and/or use in Canadian workplaces; (2) toxicity of the substance (strength of evidence for carcinogenicity and other health effects); (3) feasibility of producing a carcinogen profile and/or an occupational estimate; and (4) special interest from the public/scientific community. Carcinogens were ranked as high, medium or low priority based on specific conditions regarding these criteria, and stakeholder input was incorporated. Priorities were set separately for the creation of new carcinogen profiles and for new occupational exposure estimates. Results: Overall, 246 agents were reviewed for inclusion in the occupational priorities list. For carcinogen profile generation, 103 were prioritized (11 high, 33 medium, and 59 low priority), and 36 carcinogens were deemed priorities for occupational exposure estimation (13 high, 17 medium, and 6 low priority). Conclusion: Prioritizing and ranking occupational carcinogens is required for a variety of purposes, including research, resource allocation at different jurisdictional levels, calculations of occupational cancer burden, and planning of CAREX-type projects in different countries. This paper outlines how this process was achieved in Canada; this may provide a model for other countries and jurisdictions as a part of occupational cancer prevention efforts

    Use and Reliability of Exposure Assessment Methods in Occupational Case-Control Studies in the General Population: Past, Present, and Future

    No full text
    Introduction: Retrospective occupational exposure assessment has been challenging in case-control studies in the general population. We aimed to review (i) trends of different assessment methods used in the last 40 years and (ii) evidence of reliability for various assessment methods. Methods: Two separate literature reviews were conducted. We first reviewed all general population cancer case-control studies published from 1975 to 2016 to summarize the exposure assessment approach used. For the second review, we systematically reviewed evidence of reliability for all methods observed in the first review. Results: Among the 299 studies included in the first review, the most frequently used assessment methods were self-report/assessment (n = 143 studies), case-by-case expert assessment (n = 139), and job-exposure matrices (JEMs; n = 82). Usage trends for these methods remained relatively stable throughout the last four decades. Other approaches, such as the application of algorithms linking questionnaire responses to expert-assigned exposure estimates and modelling of exposure with historical measurement data, appeared in 21 studies that were published after 2000. The second review retrieved 34 comparison studies examining methodological reliability. Overall, we observed slightly higher median kappa agreement between exposure estimates from different expert assessors (~0.6) than between expert estimates and exposure estimates from self-reports (~0.5) or JEMs (~0.4). However, reported reliability measures were highly variable for different methods and agents. Limited evidence also indicates newer methods, such as assessment using algorithms and measurement-calibrated quantitative JEMs, may be as reliable as traditional methods. Conclusion: The majority of current research assesses exposures in the population with similar methods as studies did decades ago. Though there is evidence for the development of newer approaches, more concerted effort is needed to better adopt exposure assessment methods with more transparency, reliability, and efficiency

    Burden of lung cancer attributable to occupational diesel engine exhaust exposure in Canada

    No full text
    OBJECTIVE: To estimate the population attributable fraction (PAF) and number of incident and fatal lung cancers in Canada from occupational exposure to diesel engine exhaust (DEE). METHODS: DEE exposure prevalence and level estimates were used with Canadian Census and Labour Force Survey data to model the exposed population across the risk exposure period (REP, 1961-2001). Relative risks of lung cancer were calculated based on a meta-regression selected from the literature. PAFs were calculated using Levin's equation and applied to the 2011 lung cancer statistics obtained from the Canadian Cancer Registry. RESULTS: We estimated that 2.4% (95% CI 1.6% to 6.6%) of lung cancers in Canada are attributable to occupational DEE exposure, corresponding to approximately 560 (95% CI 380 to 1570) incident and 460 (95% CI 310 to 1270) fatal lung cancers in 2011. Overall, 1.6 million individuals alive in 2011 were occupationally exposed to DEE during the REP, 97% of whom were male. Occupations with the highest burden were underground miners, truck drivers and mechanics. Half of the attributable lung cancers occurred among workers with low exposure. CONCLUSIONS: This is the first study to quantify the burden of lung cancer attributable to occupational DEE exposure in Canada. Our results underscore a large potential for prevention, and a large public health impact from occupational exposure to low levels of DEE
    • …
    corecore