33 research outputs found

    Polymer solid acid composite membranes for fuel-cell applications

    Get PDF
    A systematic study of the conductivity of polyvinylidene fluoride (PVDF) and CsHSO4 composites, containing 0 to 100% CsHSO4, has been carried out. The polymer, with its good mechanical properties, served as a supporting matrix for the high proton conductivity inorganic phase. The conductivity of composites exhibited a sharp increase with temperature at 142°C, characteristic of the superprotonic phase transition of CsHSO4. At high temperature (160°C), the dependence of conductivity on vol % CsHSO4 was monotonic and revealed a percolation threshold of ~10 vol %. At low temperature (100°C), a maximum in the conductivity at ~80 vol % CsHSO4 was observed. Results of preliminary fuel cell measurements are presented

    Alcohol Fuel Cells at Optimal Temperatures

    Get PDF
    High-power-density alcohol fuel cells can relieve many of the daunting challenges facing a hydrogen energy economy. Here, such fuel cells are achieved using CsH2PO4 as the electrolyte and integrating into the anode chamber a Cu-ZnO/Al2O3 methanol steam-reforming catalyst. The temperature of operation, ~250°C, is matched both to the optimal value for fuel cell power output and for reforming. Peak power densities using methanol and ethanol were 226 and 100 mW/cm^2, respectively. The high power output (305 mW/cm^2) obtained from reformate fuel containing 1% CO demonstrates the potential of this approach with optimized reforming catalysts and also the tolerance to CO poisoning at these elevated temperatures

    Engineering the Next Generation of Solid State Proton Conductors: Synthesis and Properties of Ba_(3−x)K_(x)H_(x)(PO_4)_2

    Get PDF
    A new series of compounds with general chemical formula Ba_(3−x)K_(x)H_(x)(PO_4)_2 has been successfully prepared. This particular stoichiometry was targeted as a candidate solid-state proton conductor because of its anticipated structural similarity to known M_(3)H(XO_4)_2 superprotonic conductors (M = Cs, Rb, NH4, K; X = Se, S) and to the known trigonal compound Ba_(3)(PO_4)_2. The materials were synthesized from aqueous solution using barium acetate, dipotassium hydrogen phosphate, and potassium hydroxide as starting materials. Through variations in the initial solution stoichiometry or the synthesis temperature, the final stoichiometry could be controlled from x ~ 0.5 to ~1. X-ray powder diffraction, energy dispersive spectroscopy chemical analysis, ^(1)H magic angle spinning (MAS) nuclear magnetic spectroscopy, and thermogravimetric analysis were all employed to establish potassium and proton incorporation. The diffraction data confirmed crystallization of a trigonal phase, and chemical analysis showed the (Ba+K):P ratio to be 3:2, consistent with the target stoichiometry. The conductivity of the Ba_(3−x)K_(x)H_(x)(PO_4)_2 materials, as measured by A.C. impedance spectroscopy, is about 3 orders of magnitude greater than the end-member Ba_(3)(PO_4)_2 material with only a slight dependence on x, however, it is substantially lower than that of typical superprotonic conductors and of the M_(3)H(XO_4)_2 materials in particular. The close proximity of Ba to the hydrogen bond site is proposed to explain this behavior. At 250 °C, the conductivity is 2.4 × 10^(−5) S/cm for the composition x = 0.80, which, when combined with the water insolubility and the relatively high thermal stability, may render Ba_(3−x)K_(x)H_(x)(PO_4)_2 an attractive alternative in selected electrochemical applications to known superprotonic conductors

    Superprotonic phase transition of CsHSO4: A molecular dynamics simulation study

    Get PDF
    The superprotonic phase transition (phase II --> phase I; 414 K) of cesium hydrogen sulfate, CsHSO4, was simulated using molecular dynamics with the "first principles" MSXX force field (FF). The structure, binding energy, and vibrational frequencies of the CsHSO4 monomer, the binding energy of the (H2SO4)2 dimer, and the torsion barrier of the HSO4- ion were determined from quantum mechanical calculations, and the parameters of the Dreiding FF for Cs, S, O, and H adjusted to reproduce these quantities. Each hydrogen atom was treated as bonded exclusively to a single oxygen atom (proton donor), but allowed to form hydrogen bonds to various second nearest oxygen atoms (proton acceptors). Fixed temperature-pressure (NPT) dynamics were employed to study the structure as a function of temperature from 298 to 723 K. In addition, the influence of several force field parameters, including the hydrogen torsional barrier height, hydrogen bond strength, and oxygen charge distribution, on the structural behavior of CsHSO4 was probed. Although the FF does not allow proton migration (i.e., proton jumps) between oxygen atoms, a clear phase transition occurred as demonstrated by a discrete change of unit cell symmetry (monoclinic to tetragonal), cell volume, and molar enthalpy. The dynamics of the HSO4- group reorientational motion also changed dramatically at the transition. The observation of a transition to the expected tetragonal phase using a FF in which protons cannot migrate indicates that proton diffusion does not drive the transition to the superprotonic phase. Rather, high conductivity is a consequence of the rapid reorientations that occur in the high temperature phase. Furthermore, because no input from the superprotonic phase was employed in these simulations, it may be possible to employ MD to hypothesize superprotonic materials

    Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes

    Get PDF
    The compound CsH2PO4 has emerged as a viable electrolyte for intermediate temperature (200–300 °C) fuel cells. In order to settle the question of the high temperature behavior of this material, conductivity measurements were performed by two-point AC impedance spectroscopy under humidified conditions (p[H2O] = 0.4 atm). A transition to a stable, high conductivity phase was observed at 230 °C, with the conductivity rising to a value of 2.2 × 10^–2 S cm^–1 at 240 °C and the activation energy of proton transport dropping to 0.42 eV. In the absence of active humidification, dehydration of CsH2PO4 does indeed occur, but, in contradiction to some suggestions in the literature, the dehydration process is not responsible for the high conductivity at this temperature. Electrochemical characterization by galvanostatic current interrupt (GCI) methods and three-point AC impedance spectroscopy (under uniform, humidified gases) of CsH2PO4 based fuel cells, in which a composite mixture of the electrolyte, Pt supported on carbon, Pt black and carbon black served as the electrodes, showed that the overpotential for hydrogen electrooxidation was virtually immeasurable. The overpotential for oxygen electroreduction, however, was found to be on the order of 100 mV at 100 mA cm^–2. Thus, for fuel cells in which the supported electrolyte membrane was only 25 µm in thickness and in which a peak power density of 415 mW cm^–2 was achieved, the majority of the overpotential was found to be due to the slow rate of oxygen electrocatalysis. While the much faster kinetics at the anode over those at the cathode are not surprising, the result indicates that enhancing power output beyond the present levels will require improving cathode properties rather than further lowering the electrolyte thickness. In addition to the characterization of the transport and electrochemical properties of CsH2PO4, a discussion of the entropy of the superprotonic transition and the implications for proton transport is presented

    Advanced Electrodes for Solid Acid Fuel Cells by Platinum Deposition on CsH_(2)PO_4

    Get PDF
    We demonstrate cathodes for solid acid fuel cells fabricated by vapor deposition of platinum from the metalorganic precursor Pt(acac)_2 on the solid acid CsH_(2)PO_4 at 210 °C. A network of platinum nanoparticles with diameters of 2−4 nm serves as both the oxygen reduction catalyst and the electronic conductor in the electrode. Electrodes with a platinum content of 1.75 mg/cm^2 are more active for oxygen reduction than previously reported electrodes with a platinum content of 7.5 mg/cm^2. Electrodes containing <1.75 mg/cm^2 of platinum show significantly reduced catalytic activity and increased ohmic resistance indicative of a highly discontinuous catalytic-electronic platinum network

    Structure and thermal behavior of the new superprotonic conductor Cs_2(HSO_4)(H_2PO_4)

    Get PDF
    Ongoing studies of the CsHSO_4-CsH_2PO_4 system, aimed at developing novel proton conducting solids, resulted in the new compound Cs_2(HSO_4)(H_2PO_4) (dicesium hydrogensulfate dihydrogenphosphate). Single-crystal X-ray diffraction (performed at room temperature) revealed Cs_2(HSO_4)(H_2PO_4) to crystallize in space group P2_1/n with lattice parameters a = 7.856 (8), b = 7.732 (7), c = 7.827 (7) Å, and β = 99.92 (4)°. The compound has a unit-cell volume of 468.3 (8) Å3 and two formula units per cell, giving a calculated density of 3.261 Mg m^(-3). Six non-H atoms and two H atoms were located in the asymmetric unit, with SO_4 and PO_4 groups randomly arranged on the single tetrahedral anion site. Refinement using all observed reflections yielded weighted residuals of 0.0890 and 0.0399 based on F(2) and F values, respectively. Anisotropic temperature factors were employed for all six non-H atoms and fixed isotropic temperature factors for the two H atoms. The structure contains zigzag chains of hydrogen-bonded anion tetrahedra that extend in the [010] direction. Each tetrahedron is additionally linked to a tetrahedron in a neighboring chain to give a planar structure with hydrogen-bonded sheets lying parallel to (101). Thermal analysis of the superprotonic transition in Cs_2(HSO_4)(H_2PO_4) showed that the transformation to the high-temperature phase occurs by a two-step process. The first is a sharp transition at 334 K and the second a gradual transition from 342 to 378 K. The heat of transformation for the entire process (~330-382 K) is 44 ± 2 J g^(-1). Thermal decomposition of Cs_2(HSO_4)(H_2PO_4) takes place at much higher temperatures, with an onset of approximately 460 K

    Solid acids as fuel cell electrolytes

    Get PDF
    Fuel cells are attractive alternatives to combustion engines for electrical power generation because of their very high efficiencies and low pollution levels. Polymer electrolyte membrane fuel cells are generally considered to be the most viable approach for mobile applications. However, these membranes require humid operating conditions, which limit the temperature of operation to less than 100°C; they are also permeable to methanol and hydrogen, which lowers fuel efficiency. Solid, inorganic, acid compounds (or simply, solid acids) such as CsHSO_4 and Rb_3H(SeO_4)_2 have been widely studied because of their high proton conductivities and phase-transition behaviour. For fuel-cell applications they offer the advantages of anhydrous proton transport and high-temperature stability (up to 250°C). Until now, however, solid acids have not been considered viable fuel-cell electrolyte alternatives owing to their solubility in water and extreme ductility at raised temperatures (above approximately 125°C). Here we show that a cell made of a CsHSO_4 electrolyte membrane (about 1.5 mm thick) operating at 150–160°C in a H_2/O_2 configuration exhibits promising electrochemical performances: open circuit voltages of 1.11 V and current densities of 44 mA cm^-2 at short circuit. Moreover, the solid-acid properties were not affected by exposure to humid atmospheres. Although these initial results show promise for applications, the use of solid acids in fuel cells will require the development of fabrication techniques to reduce electrolyte thickness, and an assessment of possible sulphur reduction following prolonged exposure to hydrogen

    Synthesis, Structure, and Properties of Compounds in the NaHSO_4−CsHSO_4 System. 1. Crystal Structures of Cs_2Na(HSO_4)_3 and CsNa_2(HSO_4_)3

    Get PDF
    Exploratory synthesis in the NaHSO₄-CsHSO₄ system, aimed at discovering novel proton conducting solids, resulted in the new compounds CsNa₂(HSO₄)₃ and Cs₂Na(HSO₄)₃. Single-crystal X-ray diffraction (performed at room temperature) revealed CsNa₂(HSO₄)₃ to crystallize in the cubic space group P2₁3 with lattice parameters a=10.568(2)Å and Z=4, whereas CS2Na(HSO₄)₃, studied by both single-crystal neutron and X-ray methods, crystallizes in the hexagonal space group P6₃/m. The latter compound has lattice parameters a=8.5712(17) and c=9.980(2)Å, and Z=2. The unit cell volumes are 1180.4(4) and 634.9(2)ų, respectively, giving calculated densities of 2.645 and 3.304 mg m⁻³. Refinement using all observed reflections yielded a weighted residual, R-w(F²), of 0.0515 based on F² X-ray values for CsNa₂(HSO₄)₃. For Cs₂Na(HSO₄)₃ the analogous X-ray and neutron values were 0.0483 and 0.1715, respectively. Both structures contain a single, crystallographically distinct, asymmetric hydrogen bond (as confirmed by NMR investigations) and unique, three-membered (HSO₄)₃ rings. The geometric match between the NaO₆ octahedra and the rings suggests the sodium polyhedra may serve to template the (HSO₄)₃ unit. In CsNa₂(HSO₄)₃ the rings form a distorted cubic close-packed array. The Cs atoms are located within the "octahedral" sites of this array, and the Na atoms, within the "tetrahedral" sites. The rings in CS₂Na(HSO₄)₃ are linked together by NaO6 octahedra to form infinite Na(HSO₄)₃ chains that extend along 001. The hexagonal compound exhibits disorder about the sulfate tetrahedron that suggests a P6₃/m → P6 phase transition may occur upon cooling
    corecore