111 research outputs found

    Metagenomic analysis of the turkey gut RNA virus community

    Get PDF
    Viral enteric disease is an ongoing economic burden to poultry producers worldwide, and despite considerable research, no single virus has emerged as a likely causative agent and target for prevention and control efforts. Historically, electron microscopy has been used to identify suspect viruses, with many small, round viruses eluding classification based solely on morphology. National and regional surveys using molecular diagnostics have revealed that suspect viruses continuously circulate in United States poultry, with many viruses appearing concomitantly and in healthy birds. High-throughput nucleic acid pyrosequencing is a powerful diagnostic technology capable of determining the full genomic repertoire present in a complex environmental sample. We utilized the Roche/454 Life Sciences GS-FLX platform to compile an RNA virus metagenome from turkey flocks experiencing enteric disease. This approach yielded numerous sequences homologous to viruses in the BLAST nr protein database, many of which have not been described in turkeys. Our analysis of this turkey gut RNA metagenome focuses in particular on the turkey-origin members of the Picornavirales, the Caliciviridae, and the turkey Picobirnaviruses

    Critical Role of the Virus-Encoded MicroRNA-155 Ortholog in the Induction of Marek's Disease Lymphomas

    Get PDF
    Notwithstanding the well-characterised roles of a number of oncogenes in neoplastic transformation, microRNAs (miRNAs) are increasingly implicated in several human cancers. Discovery of miRNAs in several oncogenic herpesviruses such as KSHV has further highlighted the potential of virus-encoded miRNAs to contribute to their oncogenic capabilities. Nevertheless, despite the identification of several possible cancer-related genes as their targets, the direct in vivo role of virus-encoded miRNAs in neoplastic diseases such as those induced by KSHV is difficult to demonstrate in the absence of suitable models. However, excellent natural disease models of rapid-onset Marek's disease (MD) lymphomas in chickens allow examination of the oncogenic potential of virus-encoded miRNAs. Using viruses modified by reverse genetics of the infectious BAC clone of the oncogenic RB-1B strain of MDV, we show that the deletion of the six-miRNA cluster 1 from the viral genome abolished the oncogenicity of the virus. This loss of oncogenicity appeared to be primarily due to the single miRNA within the cluster, miR-M4, the ortholog of cellular miR-155, since its deletion or a 2-nucleotide mutation within its seed region was sufficient to inhibit the induction of lymphomas. The definitive role of this miR-155 ortholog in oncogenicity was further confirmed by the rescue of oncogenic phenotype by revertant viruses that expressed either the miR-M4 or the cellular homolog gga-miR-155. This is the first demonstration of the direct in vivo role of a virus-encoded miRNA in inducing tumors in a natural infection model. Furthermore, the use of viruses deleted in miRNAs as effective vaccines against virulent MDV challenge, enables the prospects of generating genetically defined attenuated vaccines

    Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival

    Get PDF
    Thrombomodulin (TM) is an endothelial receptor that exhibits anticoagulant, antifibrinolytic and anti-inflammatory activity by inhibiting thrombin and cellular adhesion. In this study, the expression and significance of TM was examined in primary colorectal cancer and its prognostic implications explored. TM immunostaining was performed on formalin-fixed, paraffin-embedded tissue sections, from primary lesions of 200 patients with colorectal carcinoma. Institutional Ethical approval was granted and clinical data retrieved from patients' records. All normal colonic tissue expressed TM on endothelial cells. TM tumour cell expression was demonstrated in 53 (26.5%) cases and 147 (73.5%) showed no neoplastic cell staining. On univariate and multivariate analysis TM expression on tumour cells correlated significantly with tumour stage, differentiation, Jass score and 5 year survival. TM expression decreases as overall stage and tumour size increase (P=0.03). In all, 91% TM positive tumours were well differentiated and 85% of TM negative tumours were poorly differentiated (P<0.01). Five year survival rates of patients with positive and negative TM expression were 71 and 41%, respectively. Survival rate was poorer in those patients who were TM negative compared with those who were positive (P<0.01). A total of 101 (50.5%) of the cases were node negative. In this group, 5 year survival rates of patients with positive and negative TM expression were 87.5 and 37.8%, respectively, demonstrating a poorer survival rate for those who are node negative and TM negative at the time of surgery (P<0.001). This study demonstrates that loss of TM is a key indicator in tumour biology and prognosis

    Dual Infection and Superinfection Inhibition of Epithelial Skin Cells by Two Alphaherpesviruses Co-Occur in the Natural Host

    Get PDF
    Hosts can be infected with multiple herpesviruses, known as superinfection; however, superinfection of cells is rare due to the phenomenon known as superinfection inhibition. It is believed that dual infection of cells occurs in nature, based on studies examining genetic exchange between homologous alphaherpesviruses in the host, but to date, this has not been directly shown in a natural model. In this report, gallid herpesvirus 2 (GaHV-2), better known as Marek’s disease virus (MDV), was used in its natural host, the chicken, to determine whether two homologous alphaherpesviruses can infect the same cells in vivo. MDV shares close similarities with the human alphaherpesvirus, varicella zoster virus (VZV), with respect to replication in the skin and exit from the host. Recombinant MDVs were generated that express either the enhanced GFP (eGFP) or monomeric RFP (mRFP) fused to the UL47 (VP13/14) herpesvirus tegument protein. These viruses exhibited no alteration in pathogenic potential and expressed abundant UL47-eGFP or -mRFP in feather follicle epithelial cells in vivo. Using laser scanning confocal microscopy, it was evident that these two similar, but distinguishable, viruses were able to replicate within the same cells of their natural host. Evidence of superinfection inhibition was also observed. These results have important implications for two reasons. First, these results show that during natural infection, both dual infection of cells and superinfection inhibition can co-occur at the cellular level. Secondly, vaccination against MDV with homologous alphaherpesvirus like attenuated GaHV-2, or non-oncogenic GaHV-3 or meleagrid herpesvirus (MeHV-1) has driven the virus to greater virulence and these results implicate the potential for genetic exchange between homologous avian alphaherpesviruses that could drive increased virulence. Because the live attenuated varicella vaccine is currently being administered to children, who in turn could be superinfected by wild-type VZV, this could potentiate recombination events of VZV as well

    The effectiveness of mass vaccination on Marek's disease virus (MDV) outbreaks and detection within a broiler barn: A modeling study

    Get PDF
    AbstractMarek's disease virus (MDV), a poultry pathogen, has been increasing in virulence since the mid twentieth century. Since multiple vaccines have been developed and widely implemented, losses due to MDV have decreased. However, vaccine failure has occurred in the past and vaccine breakthroughs remain a problem. Failure of disease control with current vaccines would have significant economic and welfare consequences. Nevertheless, the epidemiology of the disease during a farm outbreak is not well understood. Here we present a mathematical model to predict the effectiveness of vaccines to reduce the outbreak probability and disease burden within a barn. We find that the chance of an outbreak within a barn increases with the virulence of an MDV strain, and is significantly reduced when the flock is vaccinated, especially when there the contaminant strain is of low virulence. With low quantities of contaminated dust, there is nearly a 100% effectiveness of vaccines to reduce MDV outbreaks. However, the vaccine effectiveness drops to zero with an increased amount of contamination with a middle virulence MDV strain. We predict that the larger the barn, and the more virulent the MDV strain is, the more virus is produced by the time the flock is slaughtered. With the low-to-moderate virulence of the strains studied here, the number of deaths due to MDV is very low compared to all-cause mortality regardless of the vaccination status of the birds. However, the cumulative MD incidence can reach 100% for unvaccinated cohorts, and 35% for vaccinated cohorts. These results suggest that death due to MDV is an insufficient metric to assess the prevalence of MDV broiler barns regardless of vaccine status, such that active surveillance is required to successfully assess the probability of MDV outbreaks, and to limit transmission of MDV between successive cohorts of broiler chickens

    Advances in the Household Archaeology of Highland Mesoamerica

    Full text link

    A new hypothesis for the cancer mechanism

    Full text link

    Highland Chiapas Before the Spanish Conquest

    No full text
    corecore