15 research outputs found

    The effect of accumulation period and harvest date in spring on dry-matter yield and forage quality in mixed swards containing Lolium spp. and Trifolium subterraneum in Western Australia

    No full text
    The object of this study was to determine the effect of closing date and date of harvest for conservation (accumulation period), on dry-matter (DM) yield and forage quality of annual pasture in Western Australia. The field study comprised 48 plots, 2 m × 2 m, sown with either annual ryegrass (Lolium rigidum Gaud.) or Italian ryegrass (L. multiflorum Lam.), and mixed with subterranean clover (Trifolium subterraneum L.). Defoliation of swards until the end of winter was at the three leaves tiller–1 stage. In spring, once stem nodal development had commenced, swards were defoliated every 3–4 weeks. Swards were defoliated either twice with three leaves tiller–1 (accumulation period 1 commenced on 15 August); twice with three leaves tiller–1 and then once after 4 weeks (accumulation period 2 commenced on 11 September); twice with three leaves tiller–1 and then twice after 4-week intervals (accumulation period 3 commenced on 9 October) or; twice with 3 leaves tiller–1 and then twice after 4-week intervals and then once after 3 weeks (accumulation period 4 commenced on 30 October). From the commencement of the accumulation period, tiller density, DM yield and forage quality were determined weekly for up to 10 weeks. There was a positive quadratic association between DM yield and days after the commencement of the accumulation period. Yields were maximized from accumulation period 1 with 5·3, 6·6 and 9·5 t DM ha–1, and growth rates were 140, 128 and 145 kg DM ha–1 d–1, for Wimmera annual ryegrass and Richmond and Concord cultivars of Italian ryegrass respectively. In contrast, in vitro dry-matter digestibility (IVDMD) and crude protein (CP) content were negatively associated with days after the commencement of the accumulation period, and initial values were greater than 0·80 and 180 g kg DM–1 for IVDMD and CP content respectively. The rate of decline in IVDMD d–1 for Wimmera annual ryegrass was 0·005, 0·019 and 0·012 d–1 for accumulation periods 1, 2 and 3, respectively, while for Italian ryegrass cultivars Richmond was 0·015, 0·011, 0·02 and 0·012 d–1 and Concord was 0·014, 0·009, 0·013 and 0·01 d–1, for the 4 accumulation periods respectively. It is recommended that annual and Italian ryegrass pastures be harvested between 10% and 20% inflorescence emergence when IVDMD will exceed 0·70 regardless of cultivar and/or defoliation practice prior to the commencement of the accumulation period

    Development of profitable milk production systems for northern Australia: a field assessment of the productivity of five potential farming systems using farmlets.

    No full text
    Farmlets, each of 20 cows, were established to field test five milk production systems and provide a learning platform for farmers and researchers in a subtropical environment. The systems were developed through desktop modelling and industry consultation in response to the need for substantial increases in farm milk production following deregulation of the industry. Four of the systems were based on grazing and the continued use of existing farmland resource bases, whereas the fifth comprised a feedlot and associated forage base developed as a greenfield site. The field evaluation was conducted over 4 years under more adverse environmental conditions than anticipated with below average rainfall and restrictions on irrigation. For the grazed systems, mean annual milk yield per cow ranged from 6330 kg/year (1.9 cows/ha) for a herd based on rain-grown tropical pastures to 7617 kg/year (3.0 cows/ha) where animals were based on temperate and tropical irrigated forages. For the feedlot herd, production of 9460 kg/cow.year (4.3 cows/ha of forage base) was achieved. For all herds, the level of production achieved required annual inputs of concentrates of similar to 3 t DM/animal and purchased conserved fodder from 0.3 to 1.5 t DM/animal. This level of supplementary feeding made a major contribution to total farm nutrient inputs, contributing 50% or more of the nitrogen, phosphorus and potassium entering the farming system, and presents challenges to the management of manure and urine that results from the higher stocking rates enabled. Mean annual milk production for the five systems ranged from 88 to 105% of that predicted by the desktop modelling. This level of agreement for the grazed systems was achieved with minimal overall change in predicted feed inputs; however, the feedlot system required a substantial increase in inputs over those predicted. Reproductive performance for all systems was poorer than anticipated, particularly over the summer mating period. We conclude that the desktop model, developed as a rapid response to assist farmers modify their current farming systems, provided a reasonable prediction of inputs required and milk production. Further model development would need to consider more closely climate variability, the limitations summer temperatures place on reproductive success and the feed requirements of feedlot herds

    The effect of defoliation practice in Western Australia on tiller development of annual ryegrass (Lolium rigidum) and Italian ryegrass (Lolium multiflorum) and its association with forage quality

    No full text
    The effect of defoliation on the vegetative, early reproductive and inflorescence stages of tiller development, changes in the dry-matter yield of leaf, stem and inflorescence and the associated changes in forage quality was determined on plants of annual ryegrass (Lolium rigidum Gaud.) and Italian ryegrass (L. multiflorum Lam.). The field study comprised seventy-two plots of 1 m × 2 m, sown with one annual ryegrass and seven Italian ryegrass cultivars with a range of heading dates from early to late; defoliation commenced 6 weeks after germination. During the vegetative stage of growth, plots were defoliated when the tillers had three fully expanded leaves (three-leaf stage). During the early reproductive stage of growth, to simulate a cut for silage, plots were defoliated 6–7 weeks after 0·10 of the tillers displayed nodal development. The subsequent regrowth was defoliated every 3 weeks. Assessments of changes in tiller density, yield and quality were made in the growth cycle that followed three contrasting cutting treatments during the winter–spring period (from 10 July). In treatment 1, this growth cycle (following closing-up before a subsequent conservation cut) commenced on 7 August following two defoliations each taken when the tillers were at the three-leaf stage. In treatment 2, the growth cycle commenced on 16 October following: for early-maturing cultivars, two cuts at the three-leaf stage, a cut for silage and an additional regrowth cut; for medium-maturing cultivars three cuts at the three-leaf stage and a cut for silage; and late-maturing cultivars, five cuts at the three-leaf stage. In treatment 3, defoliation up to 16 October was as for treatment 2, but the growth cycle studied started on 27 November following two additional regrowth cuts for early- and medium-maturing cultivars and cut for silage for the late-maturing cultivars. Tiller development for all cultivars was classified into three stages; vegetative, early reproductive and inflorescence. In treatment 1, in vitro dry-matter digestibility (IVDMD) and crude protein (CP) content were negatively associated with maturation of tillers. IVDMD ranged from 0·85 to 0·60 and CP ranged from 200 to less than 100 g kg–1 dry matter (DM) during the vegetative and inflorescence stages respectively. This large reduction in forage quality was due to an increase in the proportion of stem, inflorescence and dead material, combined with a reduction in the IVDMD and CP content of the stem. A high level of forage quality was retained for longer with later-maturing cultivars, and/or when vegetative tillers were initiated from the defoliation of early reproductive tillers (treatments 2 and 3). However, 15 weeks after the closing-up date in treatment 1, defoliation significantly reduced the density of inflorescences with means (±pooled s.e_m.) of 1560, 1178 and 299 ± 108 tillers m–2, and DM yield of inflorescence with means of 3·0, 0·6 and 0·1 ± 0·15 t ha–1 for treatments 1, 2 and 3 respectively. This study supports the recommendation that annual and Italian ryegrass cultivars should be classified according to maturity date based on the onset of inflorescence emergence, and that the judicious defoliation of early reproductive tillers can be used to promote the initiation of new vegetative tillers which in turn will retain forage quality for longer

    The performance of irrigated mixtures of tall fescue, ryegrass and white clover in subtropical Australia. 2. The effects on yield and botanical composition of managing for quality.

    Get PDF
    The effects on yield, botanical composition and persistence, of using a variable defoliation schedule as a means of optimising the quality of the tall fescue component of simple and complex temperate pasture mixtures in a subtropical environment was studied in a small plot cutting experiment at Gatton Research Station in south-east Queensland. A management schedule of 2-, 3- and 4-weekly defoliations in summer, autumn and spring and winter, respectively, was imposed on 5 temperate pasture mixtures: 2 simple mixtures including tall fescue (Festuca arundinacea) and white clover (Trifolium repens); 2 mixtures including perennial ryegrass (Lolium perenne), tall fescue and white clover; and a complex mixture, which included perennial ryegrass, tall fescue, white, red (T. pratense) and Persian (T. resupinatum) clovers and chicory (Cichorium intybus). Yield from the variable cutting schedule was 9% less than with a standard 4-weekly defoliation. This loss resulted from reductions in both the clover component (13%) and cumulative grass yield (6%). There was no interaction between cutting schedule and sowing mixture, with simple and complex sowing mixtures reacting in a similar manner to both cutting schedules. The experiment also demonstrated that, in complex mixtures, the cutting schedules used failed to give balanced production from all sown components. This was especially true of the grass and white clover components of the complex mixture, as chicory and Persian clover components dominated the mixtures, particularly in the first year. Quality measurements (made only in the final summer) suggested that variable management had achieved a quality improvement with increases in yields of digestible crude protein (19%) and digestible dry matter (9%) of the total forage produced in early summer. The improvements in the yields of digestible crude protein and digestible dry matter of the tall fescue component in late summer were even greater (28 and 19%, respectively). While advantages at other times of the year were expected to be smaller, the data suggested that the small loss in total yield was likely to be offset by increases in digestibility of available forage for grazing stock, especially in the critical summer period

    Dry matter yield, forage quality and persistence of tall fescue (Festuca arundinacea) cultivars compared with perennial ryegrass (Lolium perenne) in a subtropical environment

    Get PDF
    The dry matter (DM) yield, plant persistence and forage quality of tall fescue (Festuca arundinacea) and perennial ryegrass (Lolium perenne) were compared in the subtropical environment of southern Queensland, Australia. The field study was conducted under irrigation with pure, nitrogen fertilised stands of 10 commercial tall fescue cultivars (Advance, AU Triumph, Bombina, Cajun, Dovey, Maximise, Midwin, Torpedo, Quantum and Vulcan), 3 experimental cultivars (ITF 97010, ITF 97020 and PWF 29) and Dobson perennial ryegrass. From July 1997, plots were defoliated at 4-week intervals for 3 years. Changes in crude protein content and in vitro DM digestibility (IVDMD) were determined at 1, 2, 3, 4, 6 and 8 weeks post-defoliation in October (spring) 1997, January (summer), March (autumn), June (winter) and September (spring) 1998. Some cultivars of irrigated tall fescue were shown to be better adapted to a subtropical environment than perennial ryegrass. After 3 years, cumulative DM yields were in excess of 30 t/ha for Dovey, Quantum, ITF 97010, AU Triumph and Cajun tall fescue compared with 12 t/ha from Dobson perennial ryegrass swards. Plant development had a considerable influence on crude protein content and IVDMD of tall fescue and perennial ryegrass, more so than the length of the regrowth period. As plant tissue matured, the forage quality during spring declined linearly for crude protein content and for IVDMD (1998 only), and declined exponentially for IVDMD during spring (1997), summer, autumn and winter (1998). Quality losses may be minimised if tall fescue cultivars are defoliated every 2–3 weeks during spring and summer and every 3–4 weeks during autumn and winter

    The performance of irrigated mixtures of tall fescue, ryegrass and white clover in subtropical Australia. 1. The effects of sowing mixture combinations, nitrogen and oversowing on establishment, productivity, botanical composition and persistence.

    No full text
    In the subtropics of Australia, the ryegrass component of irrigated perennial ryegrass (Lolium perenne) - white clover (Trifolium repens) pastures declines by approximately 40% in the summer following establishment, being replaced by summer-active C4 grasses. Tall fescue (Festuca arundinacea) is more persistent than perennial ryegrass and might resist this invasion, although tall fescue does not compete vigorously as a seedling. This series of experiments investigated the influence of ryegrass and tall fescue genotype, sowing time and sowing mixture as a means of improving tall fescue establishment and the productivity and persistence of tall fescue, ryegrass and white clover-based mixtures in a subtropical environment. Tall fescue frequency at the end of the establishment year decreased as the number of companion species sown in the mixture increased. Neither sowing mixture combinations nor sowing rates influenced overall pasture yield (of around 14 t/ha) in the establishment year but had a significant effect on botanical composition and component yields. Perennial ryegrass was less competitive than short-rotation ryegrass, increasing first-year yields of tall fescue by 40% in one experiment and by 10% in another but total yield was unaffected. The higher establishment-year yield (3.5 t/ha) allowed Dovey tall fescue to compete more successfully with the remaining pasture components than Vulcan (1.4 t/ha). Sowing 2 ryegrass cultivars in the mixture reduced tall fescue yields by 30% compared with a single ryegrass (1.6 t/ha), although tall fescue alone achieved higher yields (7.1 t/ha). Component sowing rate had little influence on composition or yield. Oversowing the ryegrass component into a 6-week-old sward of tall fescue and white clover improved tall fescue, white clover and overall yields in the establishment year by 83, 17 and 11%, respectively, but reduced ryegrass yields by 40%. The inclusion of red (T. pratense) and Persian (T. resupinatum) clovers and chicory (Cichorium intybus) increased first-year yields by 25% but suppressed perennial grass and clover components. Yields were generally maintained at around 12 t/ha/yr in the second and third years, with tall fescue becoming dominant in all 3 experiments. The lower tall fescue seeding rate used in the first experiment resulted in tall fescue dominance in the second year following establishment, whereas in Experiments 2 and 3 dominance occurred by the end of the first year. Invasion by the C4 grasses was relatively minor (<10%) even in the third year. As ryegrass plants died, tall fescue and, to a lesser extent, white clover increased as a proportion of the total sward. Treatment effects continued into the second, but rarely the third, year and mostly affected the yield of one of the components rather than total cumulative yield. Once tall fescue became dominant, it was difficult to re-introduce other pasture components, even following removal of foliage and moderate renovation. Severe renovation (reducing the tall fescue population by at least 30%) seems a possible option for redressing this situation

    Response of perennial ryegrass (Lolium perenne) to renovation in Australian dairy pastures

    Get PDF
    This study reports on the effect of oversowing perennial ryegrass (Lolium perenne L.) into a degraded perennial ryegrass and white clover (Trifolium repens L.) pasture to extend its productive life using various intensities of seedbed preparation. Sites in New South Wales (NSW), Western Australia (WA), South Australia (SA) and Tasmania (Tas.) were chosen by a local group of farmers as being degraded and in need of renovation. Control (nil renovation) and medium (mulch and graze, spray with glyphosphate and sow) renovation treatments were common to all sites whereas minimum (mulch and graze, and sow) and full seedbed (graze and spray with glyphosphate and then full seedbed preparation) renovation were imposed only at some sites. Plots varied in area from 0.14 to 0.50 ha, and were renovated then sown in March or April 2000 and subsequently grazed by dairy cows. Pasture utilisation was estimated from pre- and post-grazing pasture mass assessed by a rising plate pasture meter. Utilised herbage mass of the renovated treatments was significantly higher than control plots in period 1 (planting to August) and 2 (first spring) at the NSW site only. There was no difference among treatments in period 3 (first summer) at any site, and only at the WA and NSW sites in period 4 (March to July 2001) was there a response to renovation. As a result, renovation at the NSW site only significantly increased ryegrass utilisation over the whole experimental period. Ryegrass plant density was higher at the NSW, WA (excluding minimum renovation) and Tas. (excluding full renovation) sites 6 months after renovation but this was only sustained for 12 months for the minimum and medium treatments at the NSW and Tas. sites, respectively, presumably due to reduced competition from naturalised C4 summer grasses [kikuyu (Pennisetum clandestinum) and paspalum (Paspalum dilatatum)] in NSW At the NSW, WA and SA sites, the original ryegrass plant density was low (<35 plants/m2) compared with the Tas. site where density was around 185/m2. The response to renovating a degraded perennial ryegrass pasture varied between sites in Australia. Positive responses were generally small and were most consistent where renovation removed competing C4 summer grasses

    Simulating pasture growth rates in Australian and New Zealand grazing systems

    No full text
    DairyMod, EcoMod, and the SGS Pasture Model are mechanistic biophysical models developed to explore scenarios in grazing systems. The aim of this manuscript was to test the ability of the models to simulate net herbage accumulation rates of ryegrass-based pastures across a range of environments and pasture management systems in Australia and New Zealand. Measured monthly net herbage accumulation rate and accumulated yield data were collated from ten grazing system experiments at eight sites ranging from cool temperate to subtropical environments. The local climate, soil, pasture species, and management (N fertiliser, irrigation, and grazing or cutting pattern) were described in the model for each site, and net herbage accumulation rates modelled. The model adequately simulated the monthly net herbage accumulation rates across the range of environments, based on the summary statistics and observed patterns of seasonal growth, particularly when the variability in measured herbage accumulation rates was taken into account. Agreement between modelled and observed growth rates was more accurate and precise in temperate than in subtropical environments, and in winter and summer than in autumn and spring. Similarly, agreement between predicted and observed accumulated yields was more accurate than monthly net herbage accumulation. Different temperature parameters were used to describe the growth of perennial ryegrass cultivars and annual ryegrass; these differences were in line with observed growth patterns and breeding objectives. Results are discussed in the context of the difficulties in measuring pasture growth rates and model limitations
    corecore