17 research outputs found
Scaling Solutions to 6D Gauged Chiral Supergravity
We construct explicitly time-dependent exact solutions to the field equations
of 6D gauged chiral supergravity, compactified to 4D in the presence of up to
two 3-branes situated within the extra dimensions. The solutions we find are
scaling solutions, and are plausibly attractors which represent the late-time
evolution of a broad class of initial conditions. By matching their near-brane
boundary conditions to physical brane properties we argue that these solutions
(together with the known maximally-symmetric solutions and a new class of
non-Lorentz-invariant static solutions, which we also present here) describe
the bulk geometry between a pair of 3-branes with non-trivial on-brane
equations of state.Comment: Contribution to the New Journal of Physics focus issue on Dark
Energy; 28 page
Kicking the Rugby Ball: Perturbations of 6D Gauged Chiral Supergravity
We analyze the axially-symmetric scalar perturbations of 6D chiral gauged
supergravity compactified on the general warped geometries in the presence of
two source branes. We find all of the conical geometries are marginally stable
for normalizable perturbations (in disagreement with some recent calculations)
and the nonconical for regular perturbations, even though none of them are
supersymmetric (apart from the trivial Salam-Sezgin solution, for which there
are no source branes). The marginal direction is the one whose presence is
required by the classical scaling property of the field equations, and all
other modes have positive squared mass. In the special case of the conical
solutions, including (but not restricted to) the unwarped `rugby-ball'
solutions, we find closed-form expressions for the mode functions in terms of
Legendre and Hypergeometric functions. In so doing we show how to match the
asymptotic near-brane form for the solution to the physics of the source
branes, and thereby how to physically interpret perturbations which can be
singular at the brane positions.Comment: 21 pages + appendices, references adde
The neutron and its role in cosmology and particle physics
Experiments with cold and ultracold neutrons have reached a level of
precision such that problems far beyond the scale of the present Standard Model
of particle physics become accessible to experimental investigation. Due to the
close links between particle physics and cosmology, these studies also permit a
deep look into the very first instances of our universe. First addressed in
this article, both in theory and experiment, is the problem of baryogenesis ...
The question how baryogenesis could have happened is open to experimental
tests, and it turns out that this problem can be curbed by the very stringent
limits on an electric dipole moment of the neutron, a quantity that also has
deep implications for particle physics. Then we discuss the recent spectacular
observation of neutron quantization in the earth's gravitational field and of
resonance transitions between such gravitational energy states. These
measurements, together with new evaluations of neutron scattering data, set new
constraints on deviations from Newton's gravitational law at the picometer
scale. Such deviations are predicted in modern theories with extra-dimensions
that propose unification of the Planck scale with the scale of the Standard
Model ... Another main topic is the weak-interaction parameters in various
fields of physics and astrophysics that must all be derived from measured
neutron decay data. Up to now, about 10 different neutron decay observables
have been measured, much more than needed in the electroweak Standard Model.
This allows various precise tests for new physics beyond the Standard Model,
competing with or surpassing similar tests at high-energy. The review ends with
a discussion of neutron and nuclear data required in the synthesis of the
elements during the "first three minutes" and later on in stellar
nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic
Anisotropic modulus stabilisation: strings at LHC scales with micron-sized extra dimensions
Visual Compensatory Tracking Performance after Exposure to Flashblinding Pulses. I. Comparison of Human and Rhesus Monkey Subjects
Visual Compensatory Tracking Performance after Exposure to Flashblinding Pulses. II. Sub-Damage-Threshold Laser Irradiation of Rhesus Monkey Subjects
Recommended from our members
Breakdown phenomena in high power klystrons
In the course of developing new high peak power klystrons at SLAC, high electric fields in several regions of these devices have become an important source of vacuum breakdown phenomena. In addition, a renewed interest in breakdown phenomena for nanosecond pulse, multi-megavolt per centimeter fields has been sparked by recent R and D work in the area of gigawatt RF sources. The most important regions of electrical breakdown are in the output cavity gap area, the RF ceramic windows, and the gun ceramic insulator. The details of the observed breakdown in these regions, experiments performed to understand the phenomena and solutions found to alleviate the problems will be discussed. Recently experiments have been performed on a new prototype R and D klystron. Peak electric fields across the output cavity gaps of this klystron exceed 2 MV/cm. The effect of peak field duration (i.e. pulse width) on the onset of breakdown have been measured. The pulse widths varied from tens of nanoseconds to microseconds. Results from these experiments will be presented. The failure of ceramic RF windows due to multipactor and puncturing was an important problem to overcome in order that our high power klystrons would have a useful life expectancy. Consequently many studies and tests were made to understand and alleviate window breakdown phenomena. Some of the results in this area, especially the effects of surface coatings, window materials and processing techniques and their effects on breakdown will be discussed. Another important source of klystron failure in the recent past at SLAC has been the puncturing of the high voltage ceramic insulator in the gun region. A way of alleviating this problem has been found although the actual cause of the puncturing is not yet clear. The ''practical'' solution to this breakdown process will be described and a possible mechanism for the puncturing will be presented. 9 refs., 5 figs., 3 tabs
Recommended from our members
The Next Linear Collider Test Accelerator
During the past several years, there has been tremendous progress on the development of the RF system and accelerating structures for a Next Linear Collider (NLC). Developments include high-power klystrons, RF pulse-compression systems and damped/detuned accelerator structures to reduce wakefields. In order to integrate these separate development efforts into an actual X-band accelerator capable of accelerating the electron beams necessary for an NLC, we plan to build an NLC Test Accelerator (NLCTA). The goal of the NLCTA is to bring together all elements of the entire accelerating system by constructing. and reliably operating an engineered model of a high-gradient linac suitable for the NLC. The NLCTA win serve as a test-bed as the design of the NLC evolves and will provide a model upon which a reliable cost estimate can be based. In addition to testing the RF acceleration system, the NLCTA will be able to address many questions related to the dynamics of the beam during acceleration. In this paper, we will report on the status of the design and component development for the NLC Test Accelerator
