43 research outputs found

    Eigenstate–Specific Temperatures in Two–Level Paramagnetic Spin Lattices

    Get PDF
    Increasing interest in the thermodynamics of small and/or isolated systems, in combination with recent observations of negative temperatures of atoms in ultracold optical lattices, has stimulated the need for estimating the conventional, canonical temperature Tconvc of systems in equilibrium with heat baths using eigenstate-specific temperatures (ESTs). Four distinct ESTs—continuous canonical, discrete canonical, continuous microcanonical, and discrete microcanonical—are accordingly derived for two-level paramagnetic spin lattices (PSLs) in external magnetic fields. At large N, the four ESTs are intensive, equal to Tconvc, and obey all four laws of thermodynamics. In contrast, for N \u3c 1000, the ESTs of most PSL eigenstates are non-intensive, differ from Tconvc, and violate each of the thermodynamic laws. Hence, in spite of their similarities to Tconvc at large N, the ESTs are not true thermodynamic temperatures. Even so, each of the ESTs manifests a unique functional dependence on energy which clearly specifies the magnitude and direction of their deviation from Tconvc; the ESTs are thus good temperature estimators for small PSLs. The thermodynamic uncertainty relation is obeyed only by the ESTs of small canonical PSLs; it is violated by large canonical PSLs and by microcanonical PSLs of any size. The ESTs of population-inverted eigenstates are negative (positive) when calculated using Boltzmann (Gibbs) entropies; the thermodynamic implications of these entropically induced differences in sign are discussed in light of adiabatic invariance of the entropies. Potential applications of the four ESTs to nanothermometers and to systems with long-range interactions are discussed

    Functional rescue of inactivating mutations of the human neurokinin 3 receptor using pharmacological chaperones

    Get PDF
    G protein-coupled receptors (GPCRs) facilitate the majority of signal transductions across cell membranes in humans, with numerous diseases attributed to inactivating GPCR mutations. Many of these mutations result in misfolding during nascent receptor synthesis in the endoplasmic reticulum (ER), resulting in intracellular retention and degradation. Pharmacological chaperones (PCs) are cell-permeant small molecules that can interact with misfolded receptors in the ER and stabilise/rescue their folding to promote ER exit and trafficking to the cell membrane. The neurokinin 3 receptor (NK3R) plays a pivotal role in the hypothalamic–pituitary–gonadal reproductive axis. We sought to determine whether NK3R missense mutations result in a loss of cell surface receptor expression and, if so, whether a cell-permeant small molecule NK3R antagonist could be repurposed as a PC to restore function to these mutants. Quantitation of cell surface expression levels of seven mutant NK3Rs identified in hypogonadal patients indicated that five had severely impaired cell surface expression. A small molecule NK3R antagonist, M8, increased cell surface expression in four of these five and resulted in post-translational receptor processing in a manner analogous to the wild type. Importantly, there was a significant improvement in receptor activation in response to neurokinin B (NKB) for all four receptors following their rescue with M8. This demonstrates that M8 may have potential for therapeutic development in the treatment of hypogonadal patients harbouring NK3R mutations. The repurposing of existing small molecule GPCR modulators as PCs represents a novel and therapeutically viable option for the treatment of disorders attributed to mutations in GPCRs that cause intracellular retention.The National Research Foundation South Africa; Competitive Support for Unrated Researchers; the Swiss–South African Joint Research Programme; Competitive Support for Rated Researchers; the NRF National Equipment Program and the National Institutes of Health.https://www.mdpi.com/journal/ijmsAnatomy and PhysiologyImmunologyPhysiolog

    Eigenstate-specific temperatures in two-level paramagnetic spin lattices

    Get PDF
    Increasing interest in the thermodynamics of small and/or isolated systems, in combination with recent observations of negative temperatures of atoms in ultracold optical lattices, has stimulated the need for estimating the conventional, canonical temperature T-c(conv) of systems in equilibrium with heat baths using eigenstate-specific temperatures (ESTs). Four distinct ESTs-continuous canonical, discrete canonical, continuous microcanonical, and discrete microcanonical-are accordingly derived for two-level paramagnetic spin lattices (PSLs) in external magnetic fields. At large N, the four ESTs are intensive, equal to T-c(conv), and obey all four laws of thermodynamics. In contrast, for N < 1000, the ESTs of most PSL eigenstates are non-intensive, differ from T-c(conv), and violate each of the thermodynamic laws. Hence, in spite of their similarities to T-c(conv) at large N, the ESTs are not true thermodynamic temperatures. Even so, each of the ESTs manifests a unique functional dependence on energy which clearly specifies the magnitude and direction of their deviation from T-c(conv); the ESTs are thus good temperature estimators for small PSLs. The thermodynamic uncertainty relation is obeyed only by the ESTs of small canonical PSLs; it is violated by large canonical PSLs and by microcanonical PSLs of any size. The ESTs of population-inverted eigenstates are negative (positive) when calculated using Boltzmann (Gibbs) entropies; the thermodynamic implications of these entropically induced differences in sign are discussed in light of adiabatic invariance of the entropies. Potential applications of the four ESTs to nanothermometers and to systems with long-range interactions are discussed. Published by AIP Publishing.National Science Foundation [NSF-EPS-0132295]; Howard Hughes Medical Institute12 month embargo; published online: 5 December 2017This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore