345 research outputs found

    Children's Phthalate Intakes and Resultant Cumulative Exposures Estimated from Urine Compared with Estimates from Dust Ingestion, Inhalation and Dermal Absorption in Their Homes and Daycare Centers.

    Get PDF
    Total daily intakes of diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(isobutyl) phthalate (DiBP), butyl benzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) were calculated from phthalate metabolite levels measured in the urine of 431 Danish children between 3 and 6 years of age. For each child the intake attributable to exposures in the indoor environment via dust ingestion, inhalation and dermal absorption were estimated from the phthalate levels in the dust collected from the child's home and daycare center. Based on the urine samples, DEHP had the highest total daily intake (median: 4.42 µg/d/kg-bw) and BBzP the lowest (median: 0.49 µg/d/kg-bw). For DEP, DnBP and DiBP, exposures to air and dust in the indoor environment accounted for approximately 100%, 15% and 50% of the total intake, respectively, with dermal absorption from the gas-phase being the major exposure pathway. More than 90% of the total intake of BBzP and DEHP came from sources other than indoor air and dust. Daily intake of DnBP and DiBP from all exposure pathways, based on levels of metabolites in urine samples, exceeded the Tolerable Daily Intake (TDI) for 22 and 23 children, respectively. Indoor exposures resulted in an average daily DiBP intake that exceeded the TDI for 14 children. Using the concept of relative cumulative Tolerable Daily Intake (TDI(cum)), which is applicable for phthalates that have established TDIs based on the same health endpoint, we examined the cumulative total exposure to DnBP, DiBP and DEHP from all pathways; it exceeded the tolerable levels for 30% of the children. From the three indoor pathways alone, several children had a cumulative intake that exceeded TDI(cum). Exposures to phthalates present in the air and dust indoors meaningfully contribute to a child's total intake of certain phthalates. Such exposures, by themselves, may lead to intakes exceeding current limit values

    Separate and combined effects of oligofructose and inulin on post-weaning coli bacillosis and weight gain: a preliminary study

    Get PDF
    Trends for a reduction in the use of dietary antibiotic growth promoters have caused increased interest in the use of alternative feed additives to maintain 'gut health' after weaning. Oligofructose and inulin are 'prebiotic' fructan-containing carbohydrates purported to enhance 'gut health' in newly-weaned pigs by altering microbial diversity (Konstantinov, et al., 2003). However, their effects using a challenge model of post-weaning colibacillosis (PWC) have never been examined. The aim of the present study was to compare the separate and combined effects of oligofructose and inulin supplementation on the occurrence of diarrhoea and the weight performance in piglets experimentally challenged with enterotoxigenic E. coli (ETEC)

    Particle size and form of the diet influence production and gastric health in growing-finishing pigs

    Get PDF
    Under Danish conditions, pelleted diets increase performance in growing-finishing pigs but compromise gastric health compared with coarsely-ground meal-feed (Hansen, 2004). However, in these studies the particle size of the mealfeed was coarser than commercial practice, and consequencly it is not known if pelleted feed increases performance compared with meal-feed or if differences were attributable to particle size effects. The aim of this study was to investigate the effect of feed grinding and pelleting on performance and gastric health in growing-finishing pigs
    corecore