1,733 research outputs found
Stability of the Black Hole Horizon and the Landau Ghost
The stability of the black hole horizon is demanded by both cosmic censorship
and the generalized second law of thermodynamics. We test the consistency of
these principles by attempting to exceed the black hole extremality condition
in various process in which a U(1) charge is added to a nearly extreme
Reissner--Nordstr\"om black hole charged with a {\it different\/} type of U(1)
charge. For an infalling spherical charged shell the attempt is foiled by the
self--Coulomb repulsion of the shell. For an infalling classical charge it
fails because the required classical charge radius exceeds the size of the
black hole. For a quantum charge the horizon is saved because in order to avoid
the Landau ghost, the effective coupling constant cannot be large enough to
accomplish the removal.Comment: 12 pages, RevTe
Can a strongly interacting Higgs boson rescue SU(5)?
Renormalization group analyses show that the three running gauge coupling
constants of the Standard Model do not become equal at any energy scale. These
analyses have not included any effects of the Higgs boson's self-interaction.
In this paper, I examine whether these effects can modify this conclusion.Comment: 8 pages (plus 4 postscript figures
Nonabelian density functional theory
Given a vector space of microscopic quantum observables, density functional
theory is formulated on its dual space. A generalized Hohenberg-Kohn theorem
and the existence of the universal energy functional in the dual space are
proven. In this context ordinary density functional theory corresponds to the
space of one-body multiplication operators. When the operators close under
commutation to form a Lie algebra, the energy functional defines a Hamiltonian
dynamical system on the coadjoint orbits in the algebra's dual space. The
enhanced density functional theory provides a new method for deriving the group
theoretic Hamiltonian on the coadjoint orbits from the exact microscopic
Hamiltonian.Comment: 1 .eps figur
Linear Response Calculations of Spin Fluctuations
A variational formulation of the time--dependent linear response based on the
Sternheimer method is developed in order to make practical ab initio
calculations of dynamical spin susceptibilities of solids. Using gradient
density functional and a muffin-tin-orbital representation, the efficiency of
the approach is demonstrated by applications to selected magnetic and strongly
paramagnetic metals. The results are found to be consistent with experiment and
are compared with previous theoretical calculations.Comment: 11 pages, RevTex; 3 Figures, postscript, high-resolution printing
(~1200dpi) is desire
How does the entropy/information bound work ?
According to the universal entropy bound, the entropy (and hence information
capacity) of a complete weakly self-gravitating physical system can be bounded
exclusively in terms of its circumscribing radius and total gravitating energy.
The bound's correctness is supported by explicit statistical calculations of
entropy, gedanken experiments involving the generalized second law, and
Bousso's covariant holographic bound. On the other hand, it is not always
obvious in a particular example how the system avoids having too many states
for given energy, and hence violating the bound. We analyze in detail several
purported counterexamples of this type (involving systems made of massive
particles, systems at low temperature, systems with high degeneracy of the
lowest excited states, systems with degenerate ground states, or involving a
particle spectrum with proliferation of nearly massless species), and exhibit
in each case the mechanism behind the bound's efficacy.Comment: LaTeX, 10 pages. Contribution to the special issue of Foundation of
Physics in honor of Asher Peres; C. Fuchs and A. van der Merwe, ed
Matching conditions and Higgs mass upper bounds revisited
Matching conditions relate couplings to particle masses. We discuss the
importance of one-loop matching conditions in Higgs and top-quark sector as
well as the choice of the matching scale. We argue for matching scales
and . Using these
results, the two-loop Higgs mass upper bounds are reanalyzed. Previous results
for few TeV are found to be too stringent. For
GeV we find GeV, the first error
indicating the theoretical uncertainty, the second error reflecting the
experimental uncertainty due to GeV.Comment: 20 pages, 6 figures; uses epsf and rotate macro
Quasiparticle band structure of infinite hydrogen fluoride and hydrogen chloride chains
We study the quasiparticle band structure of isolated, infinite HF and HCl
bent (zigzag) chains and examine the effect of the crystal field on the energy
levels of the constituent monomers. The chains are one of the simplest but
realistic models of the corresponding three-dimensional crystalline solids. To
describe the isolated monomers and the chains, we set out from the Hartree-Fock
approximation, harnessing the advanced Green's function methods "local
molecular orbital algebraic diagrammatic construction" (ADC) scheme and "local
crystal orbital ADC" (CO-ADC) in a strict second order approximation, ADC(2,2)
and CO-ADC(2,2), respectively, to account for electron correlations. The
configuration space of the periodic correlation calculations is found to
converge rapidly only requiring nearest-neighbor contributions to be regarded.
Although electron correlations cause a pronounced shift of the quasiparticle
band structure of the chains with respect to the Hartree-Fock result, the
bandwidth essentially remains unaltered in contrast to, e.g., covalently bound
compounds.Comment: 11 pages, 6 figures, 6 tables, RevTeX4, corrected typoe
Exact solution of the Zeeman effect in single-electron systems
Contrary to popular belief, the Zeeman effect can be treated exactly in
single-electron systems, for arbitrary magnetic field strengths, as long as the
term quadratic in the magnetic field can be ignored. These formulas were
actually derived already around 1927 by Darwin, using the classical picture of
angular momentum, and presented in their proper quantum-mechanical form in 1933
by Bethe, although without any proof. The expressions have since been more or
less lost from the literature; instead, the conventional treatment nowadays is
to present only the approximations for weak and strong fields, respectively.
However, in fusion research and other plasma physics applications, the magnetic
fields applied to control the shape and position of the plasma span the entire
region from weak to strong fields, and there is a need for a unified treatment.
In this paper we present the detailed quantum-mechanical derivation of the
exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static
magnetic field. Notably, these formulas are not much more complicated than the
better-known approximations. Moreover, the derivation allows the value of the
electron spin gyromagnetic ratio to be different from 2. For
completeness, we then review the details of dipole transitions between two
hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various
approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script
Nonequilibrium Magnetization Dynamics of Nickel
Ultrafast magnetization dynamics of nickel has been studied for different
degrees of electronic excitation, using pump-probe second-harmonic generation
with 150 fs/800 nm laser pulses of various fluences. Information about the
electronic and magnetic response to laser irradiation is obtained from sums and
differences of the SHG intensity for opposite magnetization directions. The
classical M(T)-curve can be reproduced for delay times larger than the electron
thermalization time of about 280 fs, even when electrons and lattice have not
reached thermal equilibrium. Further we show that the transient magnetization
reaches its minimum approx. 50 fs before electron thermalization is completed.Comment: 8 pages, 5 figures, revte
Geometrical phase effects on the Wigner distribution of Bloch electrons
We investigate the dynamics of Bloch electrons using a density operator
method and connect this approach with previous theories based on wave packets.
We study non-interacting systems with negligible disorder and strong spin-orbit
interactions, which have been at the forefront of recent research on
spin-related phenomena. We demonstrate that the requirement of gauge invariance
results in a shift in the position at which the Wigner function of Bloch
electrons is evaluated. The present formalism also yields the correction to the
carrier velocity arising from the Berry phase. The gauge-dependent shift in
carrier position and the Berry phase correction to the carrier velocity
naturally appear in the charge and current density distributions. In the
context of spin transport we show that the spin velocity may be defined in such
a way as to enable spin dynamics to be treated on the same footing as charge
dynamics. Aside from the gauge-dependent position shift we find additional,
gauge-covariant multipole terms in the density distributions of spin, spin
current and spin torque.Comment: 12 pages, 3 figure
- …