1,955 research outputs found

    Stability of the Black Hole Horizon and the Landau Ghost

    Get PDF
    The stability of the black hole horizon is demanded by both cosmic censorship and the generalized second law of thermodynamics. We test the consistency of these principles by attempting to exceed the black hole extremality condition in various process in which a U(1) charge is added to a nearly extreme Reissner--Nordstr\"om black hole charged with a {\it different\/} type of U(1) charge. For an infalling spherical charged shell the attempt is foiled by the self--Coulomb repulsion of the shell. For an infalling classical charge it fails because the required classical charge radius exceeds the size of the black hole. For a quantum charge the horizon is saved because in order to avoid the Landau ghost, the effective coupling constant cannot be large enough to accomplish the removal.Comment: 12 pages, RevTe

    Linear Response Calculations of Spin Fluctuations

    Full text link
    A variational formulation of the time--dependent linear response based on the Sternheimer method is developed in order to make practical ab initio calculations of dynamical spin susceptibilities of solids. Using gradient density functional and a muffin-tin-orbital representation, the efficiency of the approach is demonstrated by applications to selected magnetic and strongly paramagnetic metals. The results are found to be consistent with experiment and are compared with previous theoretical calculations.Comment: 11 pages, RevTex; 3 Figures, postscript, high-resolution printing (~1200dpi) is desire

    How does the entropy/information bound work ?

    Full text link
    According to the universal entropy bound, the entropy (and hence information capacity) of a complete weakly self-gravitating physical system can be bounded exclusively in terms of its circumscribing radius and total gravitating energy. The bound's correctness is supported by explicit statistical calculations of entropy, gedanken experiments involving the generalized second law, and Bousso's covariant holographic bound. On the other hand, it is not always obvious in a particular example how the system avoids having too many states for given energy, and hence violating the bound. We analyze in detail several purported counterexamples of this type (involving systems made of massive particles, systems at low temperature, systems with high degeneracy of the lowest excited states, systems with degenerate ground states, or involving a particle spectrum with proliferation of nearly massless species), and exhibit in each case the mechanism behind the bound's efficacy.Comment: LaTeX, 10 pages. Contribution to the special issue of Foundation of Physics in honor of Asher Peres; C. Fuchs and A. van der Merwe, ed

    Can a strongly interacting Higgs boson rescue SU(5)?

    Full text link
    Renormalization group analyses show that the three running gauge coupling constants of the Standard Model do not become equal at any energy scale. These analyses have not included any effects of the Higgs boson's self-interaction. In this paper, I examine whether these effects can modify this conclusion.Comment: 8 pages (plus 4 postscript figures

    Matching conditions and Higgs mass upper bounds revisited

    Get PDF
    Matching conditions relate couplings to particle masses. We discuss the importance of one-loop matching conditions in Higgs and top-quark sector as well as the choice of the matching scale. We argue for matching scales μ0,tmt\mu_{0,t} \simeq m_t and μ0,Hmax[mt,MH]\mu_{0,H} \simeq max[ m_t, M_H ]. Using these results, the two-loop Higgs mass upper bounds are reanalyzed. Previous results for Λ\Lambda\approx few TeV are found to be too stringent. For Λ=1019\Lambda=10^{19} GeV we find MH<180±4±5M_H < 180 \pm 4\pm 5 GeV, the first error indicating the theoretical uncertainty, the second error reflecting the experimental uncertainty due to mt=175±6m_t=175\pm6 GeV.Comment: 20 pages, 6 figures; uses epsf and rotate macro

    Nonabelian density functional theory

    Full text link
    Given a vector space of microscopic quantum observables, density functional theory is formulated on its dual space. A generalized Hohenberg-Kohn theorem and the existence of the universal energy functional in the dual space are proven. In this context ordinary density functional theory corresponds to the space of one-body multiplication operators. When the operators close under commutation to form a Lie algebra, the energy functional defines a Hamiltonian dynamical system on the coadjoint orbits in the algebra's dual space. The enhanced density functional theory provides a new method for deriving the group theoretic Hamiltonian on the coadjoint orbits from the exact microscopic Hamiltonian.Comment: 1 .eps figur

    Geometrical phase effects on the Wigner distribution of Bloch electrons

    Full text link
    We investigate the dynamics of Bloch electrons using a density operator method and connect this approach with previous theories based on wave packets. We study non-interacting systems with negligible disorder and strong spin-orbit interactions, which have been at the forefront of recent research on spin-related phenomena. We demonstrate that the requirement of gauge invariance results in a shift in the position at which the Wigner function of Bloch electrons is evaluated. The present formalism also yields the correction to the carrier velocity arising from the Berry phase. The gauge-dependent shift in carrier position and the Berry phase correction to the carrier velocity naturally appear in the charge and current density distributions. In the context of spin transport we show that the spin velocity may be defined in such a way as to enable spin dynamics to be treated on the same footing as charge dynamics. Aside from the gauge-dependent position shift we find additional, gauge-covariant multipole terms in the density distributions of spin, spin current and spin torque.Comment: 12 pages, 3 figure

    Nonequilibrium Magnetization Dynamics of Nickel

    Full text link
    Ultrafast magnetization dynamics of nickel has been studied for different degrees of electronic excitation, using pump-probe second-harmonic generation with 150 fs/800 nm laser pulses of various fluences. Information about the electronic and magnetic response to laser irradiation is obtained from sums and differences of the SHG intensity for opposite magnetization directions. The classical M(T)-curve can be reproduced for delay times larger than the electron thermalization time of about 280 fs, even when electrons and lattice have not reached thermal equilibrium. Further we show that the transient magnetization reaches its minimum approx. 50 fs before electron thermalization is completed.Comment: 8 pages, 5 figures, revte

    A Liquid Model Analogue for Black Hole Thermodynamics

    Get PDF
    We are able to characterize a 2--dimensional classical fluid sharing some of the same thermodynamic state functions as the Schwarzschild black hole. This phenomenological correspondence between black holes and fluids is established by means of the model liquid's pair-correlation function and the two-body atomic interaction potential. These latter two functions are calculated exactly in terms of the black hole internal (quasilocal) energy and the isothermal compressibility. We find the existence of a ``screening" like effect for the components of the liquid.Comment: 20 pages and 6 Encapsulated PostScript figure

    Semi-Classical Description of Antiproton Capture on Atomic Helium

    Full text link
    A semi-classical, many-body atomic model incorporating a momentum-dependent Heisenberg core to stabilize atomic electrons is used to study antiproton capture on Helium. Details of the antiproton collisions leading to eventual capture are presented, including the energy and angular momentum states of incident antiprotons which result in capture via single or double electron ionization, i.e. into [He++pˉ^{++}\,\bar p or He+pˉ^{+}\,\bar p], and the distribution of energy and angular momentum states following the Auger cascade. These final states are discussed in light of recently reported, anomalously long-lived antiproton states observed in liquid He.Comment: 15 pages, 9 figures may be obtained from authors, Revte
    corecore