6 research outputs found
Docosahexaenoic acid stability in ready-to-use therapeutic food
Ready-to-use therapeutic food (RUTF) is used to treat young children diagnosed with severe acute malnutrition. RUTF with low and balanced linoleic and alpha-linolenic acid, plus omega-3 docosahexaenoic acid (DHA), supports long-term cognitive recovery. DHA is prone to degradation due to peroxidation, possibly exacerbated by the iron inherently in RUTF. Our goals were to prepare benchtop and manufacturing scale of RUTF formulations that include DHA and measure its retention. Twenty-seven RUTF formulas with base ingredients, including oats, high oleic or commodity peanuts, and encapsulated or oil-based DHA at various levels were prepared at benchtop scale, followed by seven months of climate-controlled storage. These pilot samples had similar relative DHA retention. At the manufacturing scale, DHA was added at one of two stages in the process, either at the initial or the final mixing stage. Samples taken at preliminary or later steps show that less than 20% of DHA added at the early stages disappeared prior to packaging for any recipe tested. Overall, our data indicate that most DHA included in RUTF is retained in the final product and that DHA is best retained when added at the latest manufacturing stage
A novel intervention combining supplementary food and infection control measures to improve birth outcomes in undernourished pregnant women in Sierra Leone: A randomized, controlled clinical effectiveness trial
BACKGROUND: Innovations for undernourished pregnant women that improve newborn survival and anthropometry are needed to achieve the Sustainable Development Goals 1 and 3. This study tested the hypothesis that a combination of a nutritious supplementary food and several proven chemotherapeutic interventions to control common infections would increase newborn weight and length in undernourished pregnant women.
METHODS AND FINDINGS: This was a prospective, randomized, controlled clinical effectiveness trial of a ready-to-use supplementary food (RUSF) plus anti-infective therapies compared to standard therapy in undernourished pregnant women in rural Sierra Leone. Women with a mid-upper arm circumference (MUAC) ≤23.0 cm presenting for antenatal care at one of 43 government health clinics in Western Rural Area and Pujehun districts were eligible for participation. Standard of care included a blended corn/soy flour and intermittent preventive treatment for malaria in pregnancy (IPTp). The intervention replaced the blended flour with RUSF and added azithromycin and testing and treatment for vaginal dysbiosis. Since the study involved different foods and testing procedures for the intervention and control groups, no one except the authors conducting the data analyses were blinded. The primary outcome was birth length. Secondary outcomes included maternal weight gain, birth weight, and neonatal survival. Follow-up continued until 6 months postpartum. Modified intention to treat analyses was undertaken. Participants were enrolled and followed up from February 2017 until February 2020. Of the 1,489 women enrolled, 752 were allocated to the intervention and 737 to the standard of care. The median age of these women was 19.5 years, of which 42% were primigravid. Twenty-nine women receiving the intervention and 42 women receiving the standard of care were lost to follow-up before pregnancy outcomes were obtained. There were 687 singleton live births in the intervention group and 657 in the standard of care group. Newborns receiving the intervention were 0.3 cm longer (95% confidence interval (CI) 0.09 to 0.6; p = 0.007) and weighed 70 g more (95% CI 20 to 120; p = 0.005) than those receiving the standard of care. Those women receiving the intervention had greater weekly weight gain (mean difference 40 g; 95% CI 9.70 to 71.0, p = 0.010) than those receiving the standard of care. There were fewer neonatal deaths in the intervention (n = 13; 1.9%) than in the standard of care (n = 28; 4.3%) group (difference 2.4%; 95% CI 0.3 to 4.4), (HR 0.62 95% CI 0.41 to 0.94, p = 0.026). No differences in adverse events or symptoms between the groups was found, and no serious adverse events occurred. Key limitations of the study are lack of gestational age estimates and unblinded administration of the intervention.
CONCLUSIONS: In this study, we observed that the addition of RUSF, azithromycin, more frequent IPTp, and testing/treatment for vaginal dysbiosis in undernourished pregnant women resulted in modest improvements in anthropometric status of mother and child at birth, and a reduction in neonatal death. Implementation of this combined intervention in rural, equatorial Africa may well be an important, practical measure to reduce infant mortality in this context.
TRIAL REGISTRATION: ClinicalTrials.gov NCT03079388
Docosahexaenoic Acid Stability in Ready-to-Use Therapeutic Food
Ready-to-use therapeutic food (RUTF) is used to treat young children diagnosed with severe acute malnutrition. RUTF with low and balanced linoleic and alpha-linolenic acid, plus omega-3 docosahexaenoic acid (DHA), supports long-term cognitive recovery. DHA is prone to degradation due to peroxidation, possibly exacerbated by the iron inherently in RUTF. Our goals were to prepare benchtop and manufacturing scale of RUTF formulations that include DHA and measure its retention. Twenty-seven RUTF formulas with base ingredients, including oats, high oleic or commodity peanuts, and encapsulated or oil-based DHA at various levels were prepared at benchtop scale, followed by seven months of climate-controlled storage. These pilot samples had similar relative DHA retention. At the manufacturing scale, DHA was added at one of two stages in the process, either at the initial or the final mixing stage. Samples taken at preliminary or later steps show that less than 20% of DHA added at the early stages disappeared prior to packaging for any recipe tested. Overall, our data indicate that most DHA included in RUTF is retained in the final product and that DHA is best retained when added at the latest manufacturing stage