44 research outputs found
Histopathologic findings in malignant peripheral nerve sheath tumor predict response to radiotherapy and overall survival
BACKGROUND: Malignant peripheral nerve sheath tumor (MPNST) is an aggressive and poorly understood malignant neoplasm. Even in the setting of multimodal therapy, the clinical course of MPNST is frequently marked by metastatic conversion and poor overall prognosis, with optimal treatment paradigms for this rare tumor unknown.
METHODS: We reviewed the medical records and histopathology of 54 consecutive patients who were treated at University of California San Francisco between 1990 and 2018.
RESULTS: Our cohort consisted of 24 male and 30 female patients (median age 38 years). Fédération Nationale des Centres de Lutte Contre Le Cancer (FNCLCC) sarcoma grading criteria segregated patients into groups with differences in overall survival (OS) (
CONCLUSIONS: Our results lend support to the FNCLCC sarcoma grading criteria as a prognostic scheme for MPNST, although few cases of grade 1 were included. Further, we identify increased Ki-67 labeling as a strong predictor of poor OS from MPNST. Finally, we identify a subset of MPNSTs with a predictive immunohistochemical profile that has improved local control with adjuvant radiotherapy. These data provide insights into the grading and therapy for patients with MPNST, although further studies are needed for independent validation
Recommended from our members
MerlinS13 phosphorylation regulates meningioma Wnt signaling and magnetic resonance imaging features
Meningiomas are associated with inactivation of NF2/Merlin, but approximately one-third of meningiomas with favorable clinical outcomes retain Merlin expression. Biochemical mechanisms underlying Merlin-intact meningioma growth are incompletely understood, and non-invasive biomarkers that may be used to guide treatment de-escalation or imaging surveillance are lacking. Here, we use single-cell RNA sequencing, proximity-labeling proteomic mass spectrometry, mechanistic and functional approaches, and magnetic resonance imaging (MRI) across meningioma xenografts and patients to define biochemical mechanisms and an imaging biomarker that underlie Merlin-intact meningiomas. We find Merlin serine 13 (S13) dephosphorylation drives meningioma Wnt signaling and tumor growth by attenuating inhibitory interactions with β-catenin and activating the Wnt pathway. MRI analyses show Merlin-intact meningiomas with S13 phosphorylation and favorable clinical outcomes are associated with high apparent diffusion coefficient (ADC). These results define mechanisms underlying a potential imaging biomarker that could be used to guide treatment de-escalation or imaging surveillance for patients with Merlin-intact meningiomas
Recommended from our members
PATH-38. ROSETTE-FORMING GLIONEURONAL TUMOR IS DEFINED BY FGFR1 ACTIVATING ALTERATIONS WITH FREQUENT ACCOMPANYING PI3K AND MAPK PATHWAY MUTATIONS
Abstract
BACKGROUND
Rosette-forming glioneuronal tumor (RGNT) is an uncommon CNS tumor originally described in the fourth ventricle characterized by a low-grade glial neoplasm admixed with a rosette-forming neurocytic component.
METHODS
We reviewed clinicopathologic features of 42 patients with RGNT. Targeted next-generation sequencing was performed, and genome-wide methylation profiling is underway.
RESULTS
The 20 male and 22 female patients had a mean age of 25 years (range 3–47) at time of diagnosis. Tumors were located within or adjacent to the lateral ventricle (n=16), fourth ventricle (15), third ventricle (9), and spinal cord (2). All 31 tumors assessed to date contained FGFR1 activating alterations, either in-frame gene fusion, kinase domain tandem duplication, or hotspot missense mutation in the kinase domain (p.N546 or p.K656). While 7 of these 31 tumors harbored FGFR1 alterations as the solitary pathogenic event, 24 contained additional pathogenic alterations within PI3-kinase or MAP kinase pathway genes: 5 with additional PIK3CA and NF1 mutations, 4 with PIK3CA mutation, 3 with PIK3R1 mutation (one of which also contained focal RAF1 amplification), 5 with PTPN11 mutation (one with additional PIK3R1 mutation), and 2 with NF1 deletion. The other 5 cases demonstrated anaplastic features including hypercellularity and increased mitotic activity. Among these anaplastic cases, 3 harbored inactivating ATRX mutations and two harbored CDKN2A homozygous deletion, in addition to the FGFR1 alterations plus other PI3-kinase and MAP kinase gene mutations seen in those RGNT without anaplasia.
CONCLUSION
Independent of ventricular location, RGNT is defined by FGFR1 activating mutations or rearrangements, which are frequently accompanied by mutations involving PIK3CA, PIK3R1, PTPN11, NF1, and KRAS. Whereas pilocytic astrocytoma and ganglioglioma are characterized by solitary activating MAP kinase pathway alterations (e.g. BRAF fusion or mutation), RGNT are genetically more complex with dual PI3K-Akt-mTOR and Ras-Raf-MAPK pathway activation. Rare anaplastic examples may show additional ATRX and/or CDKN2A inactivation
Novel SOX10 Indel Mutations Drive Schwannomas Through Impaired Transactivation of Myelination Gene Programs
BACKGROUND: Schwannomas are common peripheral nerve sheath tumors that can cause severe morbidity given their stereotypic intracranial and paraspinal locations. Similar to many solid tumors, schwannomas and other nerve sheath tumors are primarily thought to arise due to aberrant hyperactivation of the RAS growth factor signaling pathway. Here, we sought to further define the molecular pathogenesis of schwannomas.
METHODS: We performed comprehensive genomic profiling on a cohort of 96 human schwannomas, as well as DNA methylation profiling on a subset. Functional studies including RNA sequencing, chromatin immunoprecipitation-DNA sequencing, electrophoretic mobility shift assay, and luciferase reporter assays were performed in a fetal glial cell model following transduction with wildtype and tumor-derived mutant isoforms of SOX10.
RESULTS: We identified that nearly one-third of sporadic schwannomas lack alterations in known nerve sheath tumor genes and instead harbor novel recurrent in-frame insertion/deletion mutations in SOX10, which encodes a transcription factor responsible for controlling Schwann cell differentiation and myelination. SOX10 indel mutations were highly enriched in schwannomas arising from nonvestibular cranial nerves (eg facial, trigeminal, vagus) and were absent from vestibular nerve schwannomas driven by NF2 mutation. Functional studies revealed these SOX10 indel mutations have retained DNA binding capacity but impaired transactivation of glial differentiation and myelination gene programs.
CONCLUSIONS: We thus speculate that SOX10 indel mutations drive a unique subtype of schwannomas by impeding proper differentiation of immature Schwann cells
Targeted Gene Expression Profiling Predicts Meningioma Outcomes and Radiotherapy Responses
Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and indications for postoperative radiotherapy are controversial. Here we develop a targeted gene expression biomarker that predicts meningioma outcomes and radiotherapy responses. Using a discovery cohort of 173 meningiomas, we developed a 34-gene expression risk score and performed clinical and analytical validation of this biomarker on independent meningiomas from 12 institutions across 3 continents (N = 1,856), including 103 meningiomas from a prospective clinical trial. The gene expression biomarker improved discrimination of outcomes compared with all other systems tested (N = 9) in the clinical validation cohort for local recurrence (5-year area under the curve (AUC) 0.81) and overall survival (5-year AUC 0.80). The increase in AUC compared with the standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval 0.07 to 0.17, P \u3c 0.001). The gene expression biomarker identified meningiomas benefiting from postoperative radiotherapy (hazard ratio 0.54, 95% confidence interval 0.37 to 0.78, P = 0.0001) and suggested postoperative management could be refined for 29.8% of patients. In sum, our results identify a targeted gene expression biomarker that improves discrimination of meningioma outcomes, including prediction of postoperative radiotherapy responses