138 research outputs found

    Breast cancer metastasis: a microRNA story

    Get PDF
    MicroRNAs (miRNAs) are small noncoding RNAs with regulatory functions, which play an important role in breast cancer. Several studies have shown that miRNAs can act either as tumor suppressors or as oncogenes, and that measurement of miRNA expression in malignancies may have diagnostic and prognostic implications. This article highlights a series of three recent studies that prove the involvement of miRNAs in breast cancer metastases. The first proves that miR-10b indirectly activates the pro-metastatic gene RHOC by suppressing HOXD10, thus leading to tumor invasion and metastasis. The second proves that miR-373 and miR-520c can also promote tumor invasion and metastasis, at least in part by regulating the gene CD44. The third identifies miR-335, miR-206, and miR-126 as suppressors of breast cancer metastasis. Loss of miR-335 leads to the activation of SOX4 and TNC (encoding tenascin C), which are responsible for the acquisition of metastatic properties. Altogether, these remarkable findings are important for our understanding of malignant transformation in the breast and may have implications for the management of patients with advanced breast cancer. The use of miRNAs as anticancer therapeutic agents is promising, and such fine molecular studies certainly help in bringing miRNAs closer to clinical practice

    Non-coding RNAs and cancer: microRNAs and beyond

    Get PDF

    Noncoding RNAs in Lung Cancer Angiogenesis

    Get PDF
    Lung cancer is the major death-related cancer in both men and women, due to late diagnostic and limited treatment efficacy. The angiogenic process that is responsible for the support of tumor progression and metastasis represents one of the main hallmarks of cancer. The role of VEGF signaling in angiogenesis is well‐established, and we summarize the role of semaphorins and their related receptors or hypoxia‐related factors role as prone of tumor microenvironment in angiogenic mechanisms. Newly, noncoding RNA transcripts (ncRNA) were identified to have vital functions in miscellaneous biological processes, including lung cancer angiogenesis. Therefore, due to their capacity to regulate almost all molecular pathways related with altered key genes, including those involved in angiogenesis and its microenvironment, ncRNAs can serve as diagnosis and prognosis markers or therapeutic targets. We intend to summarize the latest progress in the field of ncRNAs in lung cancer and their relation with hypoxia‐related factors and angiogenic genes, with a particular focus on ncRNAs relation to semaphorins

    Decoy activity through microRNAs : the therapeutic implications

    Get PDF
    Introduction: microRNAs (miRNAs), small noncoding RNAs, are deregulated in several diseases including cancer. miRNAs regulate gene expression at a posttranscriptional level by binding to 5´UTR, coding regions or 3´UTR of messenger RNAs (mRNA), inhibiting mRNA translation or causing mRNA degradation. The same miRNA can have multiple mRNA targets, and the same mRNA can be regulated by various miRNAs. Areas covered: Recently, seminal contributions by several groups have implicated miRNAs as components of an RNA--RNA language that involves crosstalk between competing endogenous RNAs through a decoy mechanism. We review the studies that described miRNAs as players in a biological decoy activity. miRNAs can either be trapped by competing endogenous RNAs or interact with proteins that have binding sites for mRNAs. Expert opinion: The miRNA decoy functions have implications for the design of therapeutic approaches in human diseases, including specific ways to overcome resistance to drug therapy and future miRNA-based clinical trials design.M.I.A. is supported by a PhD fellowship (SFRH/BD/47031/2008) from Fundacão para a Ciência e Tecnologia, Portugal. Dr. Calin is The Alan M. Gewirtz Leukemia & Lymphoma Society Scholar. He is also supported as a Fellow at The University of Texas MD Anderson Research Trust, as a University of Texas System Regents Research Scholar, and by the CLL Global Research Foundation. Work in Dr. Calin’s laboratory is supported in part by an NIH/NCI grant (CA135444), a Department of Defense Breast Cancer Idea Award, Developmental Research Awards in Breast Cancer, Ovarian Cancer, Brain Cancer, Prostate Cancer, Multiple Myeloma, and Leukemia SPOREs, the Laura and John Arnold Foundation, the RGK Foundation and the Estate of C. G. Johnson, Jr. The authors disclose no conflicts of interests and no funding was received in preparation of this manuscript

    Spinophilin expression determines cellular growth, cancer stemness and 5-flourouracil resistance in colorectal cancer

    Get PDF
    The putative tumor suppressor gene spinophilin has been involved in cancer progression in several types of cancer. In this study, we explored the prognostic value of spinophilin expression in 162 colon adenocarcinoma patients. In addition, we generated stably expressing spinophilin-directed shRNA CRC cell lines and studied the influence of spinophilin expression on cellular phenotypes and molecular interactions. We independently confirmed that low spinophilin expression levels are associated with poor prognosis in CRC patients (p = 0.038). A reduction of spinophilin levels in p53 wild-type HCT116 and p53-mutated Caco-2 cells led to increased cellular growth rates and anchorage-independent growth (p<0.05). At molecular level, reduced spinophilin levels increased the expression of the transcription factor E2F-1. In addition, we observed an increased formation of tumor spheres, increased number of CD133 positive cells and an increased resistance to 5-flourouracil (p<0.05). Finally, treatment with the de-methylating agent 5-aza-dC increased spinophilin expression in CRC cells (p<0.05), corroborated by a correlation of spinophilin expression and extent of methylated CpG sites in the gene promoter region (p<0.001). In conclusion, gain of aggressive biological properties of CRC cells including cellular growth, cancer stem cell features and 5-flourouracil resistance partly explains the role of spinophilin in CRC

    Low spinophilin expression enhances aggressive biological behavior of breast cancer

    Get PDF
    Spinophilin, a putative tumor suppressor gene, has been shown to be involved in the pathogenesis of certain types of cancer, but its role has never been systematically explored in breast cancer. In this study, we determined for the first time the expression pattern of spinophilin in human breast cancer molecular subtypes (n = 489) and correlated it with survival (n = 921). We stably reduced spinophilin expression in breast cancer cells and measured effects on cellular growth, apoptosis, anchorage-independent growth, migration, invasion and self-renewal capacity in vitro and metastases formation in vivo. Microarray profiling was used to determine the most abundantly expressed genes in spinophilin-silenced breast cancer cells. Spinophilin expression was significantly lower in basal-like breast cancer (p<0.001) and an independent poor prognostic factor in breast cancer patients (hazard ratio = 1.93, 95% confidence interval: 1.24-3.03; p = 0.004) A reduction of spinophilin levels increased cellular growth in breast cancer cells (p<0.05), without influencing activation of apoptosis. Anchorage-independent growth, migration and self-renewal capacity in vitro and metastatic potential in vivo were also significantly increased in spinophilin-silenced cells (p<0.05). Finally, we identified several differentially expressed genes in spinophilin-silenced cells. According to our data, low levels of spinophilin are associated with aggressive behavior of breast cancer
    corecore