3 research outputs found

    LLUNPIY Simulations of the 1877 Northward Catastrophic Lahars of Cotopaxi Volcano (Ecuador) for a Contribution to Forecasting the Hazards

    No full text
    LLUNPIY (lahar modeling by local rules based on an underlying pick of yoked processes, from the Quechua word “llunp’iy“, meaning flood) is a cellular automata (CA) model that simulates primary and secondary lahars, here applied to replicate those that occurred during the huge 1877 Cotopaxi Volcano eruption. The lahars flowing down the southwestern flanks of the volcano were already satisfactorily simulated in previous investigations of ours, assuming two possible different triggering mechanisms, i.e., the sudden and homogeneous melting of the summit ice and snow cap due to pyroclastic flows and the melting of the glacier parts hit by free-falling pyroclastic bombs after being upwardly ejected during the volcanic eruption. In a similar fashion, we apply here the CA LLUNPIY model to simulate the 1877 lahars sprawling out the Cotopaxi northern slopes and eventually impacting densely populated areas. Our preliminary results indicate that several important public infrastructures (among them the regional potable water supply system) and the Valle de Los Chillos and other Quito suburban areas might be devastated by northward-bound lahars, should a catastrophic Cotopaxi eruption comparable to the 1877 one occur in the near future

    Inter-comparison of carbon content in PM2.5and PM10collected at five measurement sites in Southern Italy

    No full text
    A field campaign was performed simultaneously at five measurement sites, having different characteristics, to characterize the spatial distribution of the carbonaceous content in atmospheric aerosol in Southern Italy during the winter season. Organic carbon (OC) and elemental carbon (EC) were measured at urban (Naples), suburban (Lecce), coastal/marine (Lamezia Terme and Capo Granitola), and remote (Monte Curcio) locations. OC and EC mass concentrations were quantified by the thermal-optical transmission (TOT) method, in 24-h PM10and PM2.5samples collected on quartz fiber filters, from 25 November 2015 to 1 January 2016. The different sites showed marked differences in the average concentrations of both carbonaceous species. Typically, OC average levels (±standard deviation) were higher at the sites of Naples (12.8 ± 5.1 and 11.8 ± 4.6 μg/m3) and Lecce (10.7 ± 5.8 and 9.0 ± 4.7 μg/m3), followed by Lamezia Terme (4.3 ± 2.0 and 4.0 ± 1.9 μg/m3), Capo Granitola (2.3 ± 1.2 and 1.7 ± 1.1 μg/m3), and Monte Curcio (0.9 ± 0.3 and 0.9 ± 0.3 μg/m3) in PM10and PM2.5, respectively. Similarly, EC average levels (±standard deviation) were higher at the urban sites of Naples (2.3 ± 1.1 and 1.8 ± 0.5 μg/m3) and Lecce (1.5 ± 0.8 and 1.4 ± 0.7 μg/m3), followed by Lamezia Terme (0.6 ± 0.3 and 0.6 ± 0.3 μg/m3), Capo Granitola (0.3 ± 0.3 and 0.3 ± 0.2 μg/m3), and Monte Curcio (0.06 ± 0.04 and 0.05 ± 0.03 μg/m3) in PM10and PM2.5, respectively. An opposite trend was observed for the OC/EC ratios ranging from 6.4 to 15.9 in PM10and from 6.4 to 15.5 in PM2.5with lower values in urban sites compared to remote sites. Different OC-EC correlations, 0.36 < R2< 0.90, were found in four observation sites. This behavior suggests the contributions of similar sources and common atmospheric processes in both fractions. No correlations were observed between OC and EC at the site of Naples. The average secondary organic carbon (SOC) concentrations, quantified using the minimum OC/EC ratio method, ranged from 0.4 to 7.6 μg/m3in PM10and from 0.4 to 7.2 μg/m3in PM2.5, accounting from 37 to 59% of total OC in PM10and from 40 to 57% in PM2.5with higher percentages in the urban and suburban sites of Naples and Lecce

    Particulate Matter Ionic and Elemental Composition during the Winter Season: A Comparative Study among Rural, Urban and Remote Sites in Southern Italy

    No full text
    We present an overview of the concentrations and distributions of water-soluble ion species and elemental components in ambient particulate matter for five measurement sites in southern Italy with the aim of investigating the influence of the different site characteristics on PM levels. The sites encompass different characteristics, ranging from urban to coastal and high-altitude remote areas. PM10 and PM2.5 fractions were collected simultaneously using dual channel samplers during the winter period from November 2015 to January 2016 and analyzed for water-soluble ion species, using ion chromatography, and elemental composition, using inductively coupled plasma mass spectrometry (ICP-MS). In all sites, PM2.5 represented the higher contribution to particulate mass, usually more than two times that of the coarse fraction (PM2.5−10). At the coastal site in Capo Granitola (Western Sicily), sea salts constituted about 30% of total PM10 mass. On average, ion species accounted for 30% to 60% of total PM10 mass and 15% to 50% of PM2.5 mass. We found that secondary ion species, i.e., SO2−4, NO−3 and NH+4 dominated the identifiable components within both PM2.5 and PM10 fractions. The chlorine–sodium ratio was usually lower than that expected from the natural level in sea salt, evidencing aged air masses. At the monitoring site in Naples, a highly urbanized area affected by high levels of anthropogenic source emissions, an increased contribution of ammonium was found, which was imputed to the increased ammonia emissions from industrial combustion sources and road traffic. The concentrations of the investigated elements showed noteworthy differences from one site to another. The PM10 fraction was highly enriched by sources of anthropogenic origin in the samples from the most urbanized areas. In general, the enrichment factors of the elements were similar between the PM10 and PM2.5 fractions, confirming common sources for all element
    corecore