3,372 research outputs found

    The Clinical Assessment and Remote Administration Tablet

    Get PDF
    Electronic data capture of case report forms, demographic, neuropsychiatric, or clinical assessments, can vary from scanning hand-written forms into databases to fully electronic systems. Web-based forms can be extremely useful for self-assessment; however, in the case of neuropsychiatric assessments, self-assessment is often not an option. The clinician often must be the person either summarizing or making their best judgment about the subject’s response in order to complete an assessment, and having the clinician turn away to type into a web browser may be disruptive to the flow of the interview. The Mind Research Network has developed a prototype for a software tool for the real-time acquisition and validation of clinical assessments in remote environments. We have developed the clinical assessment and remote administration tablet on a Microsoft Windows PC tablet system, which has been adapted to interact with various data models already in use in several large-scale databases of neuroimaging studies in clinical populations. The tablet has been used successfully to collect and administer clinical assessments in several large-scale studies, so that the correct clinical measures are integrated with the correct imaging and other data. It has proven to be incredibly valuable in confirming that data collection across multiple research groups is performed similarly, quickly, and with accountability for incomplete datasets. We present the overall architecture and an evaluation of its use

    Open borders, closed minds: the discursive construction of national identity in North Cyprus

    Get PDF
    The article investigates the discursive construction of a Turkish Cypriot national identity by the newspapers in North Cyprus. It questions the representation and reconstruction processes of national identity within the press and examines the various practices employed to mobilize readers around certain national imaginings. Using Critical Discourse Analysis, the article analyses news reports of the opening of border crossings in Cyprus in 2003, based on their content, the strategies used in the production of national identity and the linguistic means employed in the process. In this way, the nationalist tendencies embedded in news discourses, as well as discriminatory and exclusive practices, are sought out

    Sharing Privacy-sensitive Access to Neuroimaging and Genetics Data: A Review and Preliminary Validation

    Get PDF
    The growth of data sharing initiatives for neuroimaging and genomics represents an exciting opportunity to confront the “small N” problem that plagues contemporary neuroimaging studies while further understanding the role genetic markers play in the function of the brain. When it is possible, open data sharing provides the most benefits. However, some data cannot be shared at all due to privacy concerns and/or risk of re-identification. Sharing other data sets is hampered by the proliferation of complex data use agreements (DUAs) which preclude truly automated data mining. These DUAs arise because of concerns about the privacy and confidentiality for subjects; though many do permit direct access to data, they often require a cumbersome approval process that can take months. An alternative approach is to only share data derivatives such as statistical summaries—the challenges here are to reformulate computational methods to quantify the privacy risks associated with sharing the results of those computations. For example, a derived map of gray matter is often as identifiable as a fingerprint. Thus alternative approaches to accessing data are needed. This paper reviews the relevant literature on differential privacy, a framework for measuring and tracking privacy loss in these settings, and demonstrates the feasibility of using this framework to calculate statistics on data distributed at many sites while still providing privacy

    Isolation of a cDNA clone for the human lysosomal proteinase cathepsin B.

    Full text link

    Combination of Resting State fMRI, DTI, and sMRI Data to Discriminate Schizophrenia by N-way MCCA + jICA

    Get PDF
    Multimodal brain imaging data have shown increasing utility in answering both scientifically interesting and clinically relevant questions. Each brain imaging technique provides a different view of brain function or structure, while multimodal fusion capitalizes on the strength of each and may uncover hidden relationships that can merge findings from separate neuroimaging studies. However, most current approaches have focused on pair-wise fusion and there is still relatively little work on N-way data fusion and examination of the relationships among multiple data types. We recently developed an approach called “mCCA + jICA” as a novel multi-way fusion method which is able to investigate the disease risk factors that are either shared or distinct across multiple modalities as well as the full correspondence across modalities. In this paper, we applied this model to combine resting state fMRI (amplitude of low-frequency fluctuation, ALFF), gray matter (GM) density, and DTI (fractional anisotropy, FA) data, in order to elucidate the abnormalities underlying schizophrenia patients (SZs, n = 35) relative to healthy controls (HCs, n = 28). Both modality-common and modality-unique abnormal regions were identified in SZs, which were then used for successful classification for seven modality-combinations, showing the potential for a broad applicability of the mCCA + jICA model and its results. In addition, a pair of GM-DTI components showed significant correlation with the positive symptom subscale of Positive and Negative Syndrome Scale (PANSS), suggesting that GM density changes in default model network along with white-matter disruption in anterior thalamic radiation are associated with increased positive PANSS. Findings suggest the DTI anisotropy changes in frontal lobe may relate to the corresponding functional/structural changes in prefrontal cortex and superior temporal gyrus that are thought to play a role in the clinical expression of SZ

    A longitudinal investigation of the relationship between unconditional positive self-regard and posttraumatic growth

    Get PDF
    The present study investigated whether unconditional positive self-regard (UPSR) is associated with subsequent posttraumatic growth (PTG) following the experience of a traumatic life event. A total of 143 participants completed an online questionnaire to assess the experience of traumatic life events, posttraumatic stress, well-being and UPSR (Time 1). Three months later, 76 of the participants completed measures of well-being and perceived PTG (Time 2). Analyses were conducted to test for association between UPSR at Time 1 and perceptions of PTG at Time 2. Results showed that higher UPSR at T1 was associated with higher perceived PTG at Time 2. To measure actual growth, individual differences in well-being were computed between Time 1 and Time 2. Results showed that higher UPSR at T1 was associated with higher actual PTG. Implications of these findings are discussed and future directions for research in this area considered. Specifically, results are consistent with a person-centered understanding of therapeutic approaches to the facilitation of PT

    Long-lived quantum coherence in photosynthetic complexes at physiological temperature

    Full text link
    Photosynthetic antenna complexes capture and concentrate solar radiation by transferring the excitation to the reaction center which stores energy from the photon in chemical bonds. This process occurs with near-perfect quantum efficiency. Recent experiments at cryogenic temperatures have revealed that coherent energy transfer - a wavelike transfer mechanism - occurs in many photosynthetic pigment-protein complexes (1-4). Using the Fenna-Matthews-Olson antenna complex (FMO) as a model system, theoretical studies incorporating both incoherent and coherent transfer as well as thermal dephasing predict that environmentally assisted quantum transfer efficiency peaks near physiological temperature; these studies further show that this process is equivalent to a quantum random walk algorithm (5-8). This theory requires long-lived quantum coherence at room temperature, which never has been observed in FMO. Here we present the first evidence that quantum coherence survives in FMO at physiological temperature for at least 300 fs, long enough to perform a rudimentary quantum computational operation. This data proves that the wave-like energy transfer process discovered at 77 K is directly relevant to biological function. Microscopically, we attribute this long coherence lifetime to correlated motions within the protein matrix encapsulating the chromophores, and we find that the degree of protection afforded by the protein appears constant between 77 K and 277 K. The protein shapes the energy landscape and mediates an efficient energy transfer despite thermal fluctuations. The persistence of quantum coherence in a dynamic, disordered system under these conditions suggests a new biomimetic strategy for designing dedicated quantum computational devices that can operate at high temperature.Comment: PDF files, 15 pages, 3 figures (included in the PDF file
    corecore