34 research outputs found

    Phased whole-genome genetic risk in a family quartet using a major allele reference sequence

    Get PDF
    Abstract Whole-genome sequencing harbors unprecedented potential for characterization of individual and family genetic variation. Here, we develop a novel synthetic human reference sequence that is ethnically concordant and use it for the analysis of genomes from a nuclear family with history of familial thrombophilia. We demonstrate that the use of the major allele reference sequence results in improved genotype accuracy for disease-associated variant loci. We infer recombination sites to the lowest median resolution demonstrated to date (,1,000 base pairs). We use family inheritance state analysis to control sequencing error and inform family-wide haplotype phasing, allowing quantification of genome-wide compound heterozygosity. We develop a sequence-based methodology for Human Leukocyte Antigen typing that contributes to disease risk prediction. Finally, we advance methods for analysis of disease and pharmacogenomic risk across the coding and non-coding genome that incorporate phased variant data. We show these methods are capable of identifying multigenic risk for inherited thrombophilia and informing the appropriate pharmacological therapy. These ethnicity-specific, family-based approaches to interpretation of genetic variation are emblematic of the next generation of genetic risk assessment using whole-genome sequencing. Funding: FED was supported by NIH/NHLBI training grant T32 HL094274-01A2 and the Stanford University School of Medicine Dean's Postdoctoral Fellowship. MTW was supported by NIH National Research Service Award fellowship F32 HL097462. JKB, OEC, and CDB were supported by NHGRI grant U01HG005715. CFT, JMH, KS, LG, MW-C, MW, and RBA were supported by grants from the NIH/NIGMS U01 GM61374. KEO was supported by NIH/NHGRI 5 P50 HG003389-05. AJB was supported by the Lucile Packard Foundation for Children's Health, Hewlett Packard Foundation, and NIH/NIGMS R01 GM079719. JTD and KJK were supported by NIH/NLM T15 LM007033. EAA was supported by NIH/NHLBI KO8 HL083914, NIH New Investigator DP2 Award OD004613, and a grant from the Breetwor Family Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: JVT and AWZ are founders, consultants, and equity holders in Clinical Future; GMC has advisory roles in and research sponsorships from several companies involved in genome sequencing technology and personal genomics (see http://arep.med.harvard.edu/gmc/tech.html); MS is on the scientific advisory board of DNA Nexus and holds stock in Personalis; RBA has received consultancy fees from Novartis and 23andMe and holds stock in Personalis; AJB is a scientific advisory board membe

    Regional Variation in RBM20 Causes a Highly Penetrant Arrhythmogenic Cardiomyopathy

    Get PDF
    Background Variants in the cardiomyocyte-specific RNA splicing factor RBM20 have been linked to familial cardiomyopathy, but the causative genetic architecture and clinical consequences of this disease are incompletely defined. Methods and Results To define the genetic architecture of RBM20 cardiomyopathy, we first established a database of RBM20 variants associated with cardiomyopathy and compared these to variants observed in the general population with respect to their location in the RBM20 coding transcript. We identified 2 regions significantly enriched for cardiomyopathy-associated variants in exons 9 and 11. We then assembled a registry of 74 patients with RBM20 variants from 8 institutions across the world (44 index cases and 30 from cascade testing). This RBM20 patient registry revealed highly prevalent family history of sudden cardiac death (51%) and cardiomyopathy (72%) among index cases and a high prevalence of composite arrhythmias (including atrial fibrillation, nonsustained ventricular tachycardia, implantable cardiac defibrillator discharge, and sudden cardiac arrest, 43%). Patients harboring variants in cardiomyopathy-enriched regions identified by our variant database analysis were enriched for these findings. Further, these characteristics were more prevalent in the RBM20 registry than in large cohorts of patients with dilated cardiomyopathy and TTNtv cardiomyopathy and not significantly different from a cohort of patients with LMNA-associated cardiomyopathy. Conclusions Our data establish RBM20 cardiomyopathy as a highly penetrant and arrhythmogenic cardiomyopathy. These findings underline the importance of arrhythmia surveillance and family screening in this disease and represent the first step in defining the genetic architecture of RBM20 disease causality on a population level

    Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel

    Get PDF
    Purpose Integrating genomic sequencing in clinical care requires standardization of variant interpretation practices. The Clinical Genome Resource has established expert panels to adapt the American College of Medical Genetics and Genomics/Association for Molecular Pathology classification framework for specific genes and diseases. The Cardiomyopathy Expert Panel selected MYH7, a key contributor to inherited cardiomyopathies, as a pilot gene to develop a broadly applicable approach. Methods: Expert revisions were tested with 60 variants using a structured double review by pairs of clinical and diagnostic laboratory experts. Final consensus rules were established via iterative discussions. Results: Adjustments represented disease-/gene-informed specifications (12) or strength adjustments of existing rules (5). Nine rules were deemed not applicable. Key specifications included quantitative frameworks for minor allele frequency thresholds, the use of segregation data, and a semiquantitative approach to counting multiple independent variant occurrences where fully controlled case-control studies are lacking. Initial inter-expert classification concordance was 93%. Internal data from participating diagnostic laboratories changed the classification of 20% of the variants (n = 12), highlighting the critical importance of data sharing. Conclusion: These adapted rules provide increased specificity for use in MYH7-associated disorders in combination with expert review and clinical judgment and serve as a stepping stone for genes and disorders with similar genetic and clinical characteristics

    Interdisciplinary psychosocial care for families with inherited cardiovascular diseases

    Full text link
    Inherited cardiovascular diseases pose unique and complex psychosocial challenges for families, including coming to terms with life-long cardiac disease, risk of sudden death, grief related to the sudden death of a loved one, activity restrictions, and inheritance risk to other family members. Psychosocial factors impact not only mental health but also physical health and cooperation with clinical recommendations. We describe an interdisciplinary approach to the care of families with inherited cardiovascular disease, in which psychological care provided by specialized cardiac genetic counselors, nurses, and psychologists is embedded within the cardiovascular care team. We report illustrative cases and the supporting literature to demonstrate common scenarios, as well as practical guidance for clinicians working in the inherited cardiovascular disease setting
    corecore