66 research outputs found

    European Medicines Agency review of ixazomib (Ninlaro) for the treatment of adult patients with multiple myeloma who have received at least one prior therapy

    Get PDF
    On 21 November 2016, the European Commission issued a marketing authorisation valid throughout the European Union for ixazomib in combination with lenalidomide and dexamethasone for the treatment of adult patients with multiple myeloma who have received at least one prior therapy. Ixazomib was evaluated in one, randomised, double-blind, phase III study comparing ixazomib plus lenalidomide and dexamethasone (n=360; ixazomib arm) versus placebo plus lenalidomide and dexamethasone (n=362; placebo arm) in adult patients with relapsed and/or refractory multiple myeloma who had received at least one prior therapy. The median progression-free survival (PFS) in the intent-to-treat population was 20.6 months in patients treated with ixazomib compared with 14.7 months for patients in the placebo arm (stratified HR=0.742, 95% CI 0.587 to 0.939, stratified p-value=0.012). The most frequently reported adverse reactions (≥20%) within the ixazomib and placebo arms were diarrhoea (42% vs 36%), constipation (34% vs 25%), thrombocytopaenia (28% vs 14%), peripheral neuropathy (28% vs 21%), nausea (26% vs 21%), peripheral oedema (25% vs 18%), vomiting (22% vs 11%) and back pain (21% vs 16%). The scientific review concluded that the gain in PFS of 5.9 months observed with ixazomib was considered clinically meaningful. Concerning the possible uncertainty about the magnitude of the effect, this uncertainty was acceptable given the favourable toxicity profile, and considering that ixazomib is the first agent to allow oral triple combination therapy in this patient population which represents a therapeutic innovation in terms of convenience for patients. Therefore, the benefit-risk for ixazomib in combination with lenalidomide and dexamethasone was considered positive, although the efficacy evidence was not as comprehensive as normally required

    State space modelling and data analysis exercises in LISA Pathfinder

    Full text link
    LISA Pathfinder is a mission planned by the European Space Agency to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionalities required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data.Comment: Plenary talk presented at the 9th International LISA Symposium, 21-25 May 2012, Pari

    A strategy to characterize the LISA-Pathfinder cold gas thruster system

    Get PDF
    The cold gas micro-propulsion system that will be used during the LISA-Pathfinder mission will be one of the most important component used to ensure the "free-fall" of the enclosed test masses. In this paper we present a possible strategy to characterize the effective direction and amplitude gain of each of the 6 thrusters of this system

    Free-flight experiments in LISA Pathfinder

    Get PDF
    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this `suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.Comment: 13 pages, 5 figures. Accepted to Journal Of Physics, Conference Series. Presented at 10th International LISA Symposium, May 2014, Gainesville, FL, US

    The LISA pathfinder mission

    Get PDF
    ISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

    In-flight thermal experiments for LISA pathfinder: simulating temperature noise at the inertial sensors

    Get PDF
    Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1 mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations

    Disentangling the magnetic force noise contribution in LISA pathfinder

    Get PDF
    Magnetically-induced forces on the inertial masses on-board LISA Pathfinder are expected to be one of the dominant contributions to the mission noise budget, accounting for up to 40%. The origin of this disturbance is the coupling of the residual magnetization and susceptibility of the test masses with the environmental magnetic field. In order to fully understand this important part of the noise model, a set of coils and magnetometers are integrated as a part of the diagnostics subsystem. During operations a sequence of magnetic excitations will be applied to precisely determine the coupling of the magnetic environment to the test mass displacement using the on-board magnetometers. Since no direct measurement of the magnetic field in the test mass position will be available, an extrapolation of the magnetic measurements to the test mass position will be carried out as a part of the data analysis activities. In this paper we show the first results on the magnetic experiments during an end- to-end LISA Pathfinder simulation, and we describe the methods under development to map the magnetic field on-board

    Injection of a Body into a Geodesic: Lessons Learnt from the LISA Pathfinder Case

    Get PDF
    Launch lock and release mechanisms constitute a common space business, however, some science missions due to very challenging functional and performance requirements need the development and testing of dedicated systems. In the LISA Pathfinder mission, a gold-coated 2-kg test mass must be injected into a nearly pure geodesic trajectory with a minimal residual velocity with respect to the spacecraft. This task is performed by the Grabbing Positioning and Release Mechanism, which has been tested on-ground to provide the required qualification. In this paper, we describe the test method that analyzes the main contributions to the mechanism performance and focuses on the critical parameters affecting the residual test mass velocity at the injection into the geodesic trajectory. The test results are also presented and discussed

    Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors

    Get PDF
    We report on the performance of the capacitive gap-sensing system of the Gravitational Reference Sensor on board the LISA Pathfinder spacecraft. From in-flight measurements, the system has demonstrated a performance, down to 1 mHz, that is ranging between 0.7 and 1.8¿¿aF¿Hz-1/2. That translates into a sensing noise of the test mass motion within 1.2 and 2.4¿¿nm¿Hz-1/2 in displacement and within 83 and 170¿¿nrad¿Hz-1/2 in rotation. This matches the performance goals for LISA Pathfinder, and it allows the successful implementation of the gravitational waves observatory LISA. A 1/f tail has been observed for frequencies below 1 mHz, the tail has been investigated in detail with dedicated in-flight measurements, and a model is presented in the paper. A projection of such noise to frequencies below 0.1 mHz shows that an improvement of performance at those frequencies is desirable for the next generation of gravitational reference sensors for space-borne gravitational waves observation.Peer ReviewedPostprint (author's final draft
    • …
    corecore