277 research outputs found

    Cosmological Constant, Gauge Hierarchy and Warped Geometry

    Get PDF
    It is suggested that the mechanism responsible for the resolution of the gauge hierarchy problem within the warped geometry framework can be generalized to provide a new explanation of the extremely tiny vacuum energy density rho_V suggested by recent observations. We illustrate the mechanism with some 5D examples in which the true vacuum energy is assumed to vanish, and rho_V is associated with a false vacuum energy such that rho_V^{1/4} ~ TeV^2/M_{Pl} ~ 10^{-3} eV, where M_{Pl} denotes the reduced Planck mass. We also consider a quintessence-like solution to the dark energy problem.Comment: 10 pages, LaTeX, 2 figures, section on quantum corrections added, version to appear in Phys. Rev.

    Quantum driven Bounce of the future Universe

    Full text link
    It is demonstrated that due to back-reaction of quantum effects, expansion of the universe stops at its maximum and takes a turnaround. Later on, it contracts to a very small size in finite future time. This phenomenon is followed by a " bounce" with re-birth of an exponentially expanding non-singular universe

    Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter

    Full text link
    The Bianchi type III dark energy models with constant deceleration parameter are investigated. The equation of state parameter Ļ‰\omega is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspect of the dark energy models are discussed.Comment: 12 pages, 2 figures, Accepted version of IJT

    Role of Brans-Dicke Theory with or without self-interacting potential in cosmic acceleration

    Full text link
    In this work we have studied the possibility of obtaining cosmic acceleration in Brans-Dicke theory with varying or constant Ļ‰\omega (Brans- Dicke parameter) and with or without self-interacting potential, the background fluid being barotropic fluid or Generalized Chaplygin Gas. Here we take the power law form of the scale factor and the scalar field. We show that accelerated expansion can also be achieved for high values of Ļ‰\omega for closed Universe.Comment: 12 Latex pages, 20 figures, RevTex styl

    Generalized Holographic Dark Energy Model

    Full text link
    In this paper, the model of holographic Chaplygin gas has been extended to two general cases: first is the case of modified variable Chaplygin gas and secondly of the viscous generalized Chaplygin gas. The dynamics of the model are expressed by the use of scalar fields and the scalar potentials.Comment: 12 pages, to appear in Eur. Phys. J.

    A Two-Field Quintessence Model

    Full text link
    We study the dynamics of a quintessence model based on two interacting scalar fields. The model can account for the (recent) accelerated expansion of the Universe suggested by astronomical observations. Acceleration can be permanent or temporary and, for both scenarios, it is possible to obtain suitable values for the cosmological parameters while satisfying the nucleosynthesis constraint on the quintessence energy density. We argue that the model dynamics can be made consistent with a stable zero-energy relaxing supersymmetric vacuum.Comment: 4 pages, 3 eps figures, to be published in Phys. Rev.

    Dynamics of Logamediate and Intermediate Scenarios in the Dark Energy Filled Universe

    Full text link
    We have considered a model of two component mixture i.e., mixture of Chaplygin gas and barotropic fluid with tachyonic field. In the case, when they have no interaction then both of them retain their own properties. Let us consider an energy flow between barotropic and tachyonic fluids. In both the cases we find the exact solutions for the tachyonic field and the tachyonic potential and show that the tachyonic potential follows the asymptotic behavior. We have considered an interaction between these two fluids by introducing a coupling term. Finally, we have considered a model of three component mixture i.e., mixture of tachyonic field, Chaplygin gas and barotropic fluid with or without interaction. The coupling functions decays with time indicating a strong energy flow at the initial period and weak stable interaction at later stage. To keep the observational support of recent acceleration we have considered two particular forms (i) Logamediate Scenario and (ii) Intermediate Scenario, of evolution of the Universe. We have examined the natures of the recent developed statefinder parameters and slow-roll parameters in both scenarios with and without interactions in whole evolution of the universe.Comment: 28 pages, 20 figure

    Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification

    Full text link
    We consider the scenario emerging from the dynamics of a generalized dd-brane in a (d+1,1)(d+1, 1) spacetime. The equation of state describing this system is given in terms of the energy density, Ļ\rho, and pressure, pp, by the relationship p=āˆ’A/ĻĪ±p = - A/\rho^{\alpha}, where AA is a positive constant and 0<Ī±ā‰¤10 < \alpha \le 1. We discuss the conditions under which homogeneity arises and show that this equation of state describes the evolution of a universe evolving from a phase dominated by non-relativistic matter to a phase dominated by a cosmological constant via an intermediate period where the effective equation of state is given by p=Ī±Ļp = \alpha \rho.Comment: 5 pages, 4 figures, revte

    Non linear equation of state and effective phantom divide in brane models

    Full text link
    Here, DGP model of brane-gravity is analyzed and compared with the standard general relativity and Randall-Sundrum cases using non-linear equation of state. Phantom fluid is known to violate the weak energy condition. In this paper, it is found that this characteristic of phantom energy is affected drastically by the negative brane-tension Ī»\lambda of the RS-II model. It is found that in DGP model strong energy condition(SEC) is always violated and the universe accelerates only where as in RS-II model even SEC is not violated for 1<Ļ/Ī»<21 < \rho/\lambda < 2 and the universe decelerates
    • ā€¦
    corecore