39 research outputs found

    Changes in Gene Expression by Wheat in Response to Infection by Puccinia Triticina, Causal Fungus of Wheat Leaf Rust

    Get PDF
    Plant Scienc

    Comparative transcriptomics in the Triticeae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Barley and particularly wheat are two grass species of immense agricultural importance. In spite of polyploidization events within the latter, studies have shown that genotypically and phenotypically these species are very closely related and, indeed, fertile hybrids can be created by interbreeding. The advent of two genome-scale Affymetrix GeneChips now allows studies of the comparison of their transcriptomes.</p> <p>Results</p> <p>We have used the Wheat GeneChip to create a "gene expression atlas" for the wheat transcriptome (cv. Chinese Spring). For this, we chose mRNA from a range of tissues and developmental stages closely mirroring a comparable study carried out for barley (cv. Morex) using the Barley1 GeneChip. This, together with large-scale clustering of the probesets from the two GeneChips into "homologous groups", has allowed us to perform a genomic-scale comparative study of expression patterns in these two species. We explore the influence of the polyploidy of wheat on the results obtained with the Wheat GeneChip and quantify the correlation between conservation in gene sequence and gene expression in wheat and barley. In addition, we show how the conservation of expression patterns can be used to elucidate, probeset by probeset, the reliability of the Wheat GeneChip.</p> <p>Conclusion</p> <p>While there are many differences in expression on the level of individual genes and tissues, we demonstrate that the wheat and barley transcriptomes appear highly correlated. This finding is significant not only because given small evolutionary distance between the two species it is widely expected, but also because it demonstrates that it is possible to use the two GeneChips for comparative studies. This is the case even though their probeset composition reflects rather different design principles as well as, of course, the present incomplete knowledge of the gene content of the two species. We also show that, in general, the Wheat GeneChip is not able to distinguish contributions from individual homoeologs. Furthermore, the comparison between the two species leads us to conclude that the conservation of both gene sequence as well as gene expression is positively correlated with absolute expression levels, presumably reflecting increased selection pressure on genes coding for proteins present at high levels. In addition, the results indicate the presence of a correlation between sequence and expression conservation within the Triticeae.</p

    Interaction-Dependent Gene Expression in Mla-Specified Response to Barley Powdery Mildew

    Get PDF
    Plant recognition of pathogen-derived molecules influences attack and counterattack strategies that affect the outcome of host–microbe interactions. To ascertain the global framework of host gene expression during biotrophic pathogen invasion, we analyzed in parallel the mRNA abundance of 22,792 host genes throughout 36 (genotype × pathogen × time) interactions between barley (Hordeum vulgare) and Blumeria graminis f. sp hordei (Bgh), the causal agent of powdery mildew disease. A split-split-plot design was used to investigate near-isogenic barley lines with introgressed Mla6, Mla13, and Mla1 coiled-coil, nucleotide binding site, Leu-rich repeat resistance alleles challenged with Bgh isolates 5874 (AvrMla6 and AvrMla1) and K1 (AvrMla13 and AvrMla1). A linear mixed model analysis was employed to identify genes with significant differential expression (P value < 0.0001) in incompatible and compatible barley-Bgh interactions across six time points after pathogen challenge. Twenty-two host genes, of which five were of unknown function, exhibited highly similar patterns of upregulation among all incompatible and compatible interactions up to 16 h after inoculation (hai), coinciding with germination of Bgh conidiospores and formation of appressoria. By contrast, significant divergent expression was observed from 16 to 32 hai, during membrane-to-membrane contact between fungal haustoria and host epidermal cells, with notable suppression of most transcripts identified as differentially expressed in compatible interactions. These findings provide a link between the recognition of general and specific pathogen-associated molecules in gene-for-gene specified resistance and support the hypothesis that host-specific resistance evolved from the recognition and prevention of the pathogen's suppression of plant basal defense

    Transcript-Based Cloning of RRP46, a Regulator of rRNA Processing and R Gene–Independent Cell Death in Barley–Powdery Mildew Interactions[W][OA]

    Get PDF
    Programmed cell death (PCD) plays a pivotal role in plant development and defense. To investigate the interaction between PCD and R gene–mediated defense, we used the 22K Barley1 GeneChip to compare and contrast time-course expression profiles of Blumeria graminis f. sp hordei (Bgh) challenged barley (Hordeum vulgare) cultivar C.I. 16151 (harboring the Mla6 powdery mildew resistance allele) and its fast neutron–derived Bgh-induced tip cell death1 mutant, bcd1. Mixed linear model analysis identified genes associated with the cell death phenotype as opposed to R gene–mediated resistance. One-hundred fifty genes were found at the threshold P value < 0.0001 and a false discovery rate <0.6%. Of these, 124 were constitutively overexpressed in the bcd1 mutant. Gene Ontology and rice (Oryza sativa) alignment-based annotation indicated that 68 of the 124 overexpressed genes encode ribosomal proteins. A deletion harboring six genes on chromosome 5H cosegregates with bcd1-specified cell death and is associated with misprocessing of rRNAs but segregates independent of R gene–mediated resistance. Barley stripe mosaic virus-induced gene silencing of one of the six deleted genes, RRP46 (rRNA-processing protein 46), phenocopied bcd1-mediated tip cell death. These findings suggest that RRP46, a critical component of the exosome core, mediates RNA processing and degradation involved in cell death initiation as a result of attempted penetration by Bgh during the barley–powdery mildew interaction but is independent of gene-for-gene resistance

    A New Resource for Cereal Genomics: 22K Barley GeneChip Comes of Age

    No full text
    In recent years, access to complete genomic sequences, coupled with rapidly accumulating data related to RNA and protein expression patterns, has made it possible to determine comprehensively how genes contribute to complex phenotypes. However, for major crop plants, publicly available, standard platforms for parallel expression analysis have been limited. We report the conception and design of the new publicly available, 22K Barley1 GeneChip probe array, a model for plants without a fully sequenced genome. Array content was derived from worldwide contribution of 350,000 high-quality ESTs from 84 cDNA libraries, in addition to 1,145 barley (Hordeum vulgare) gene sequences from the National Center for Biotechnology Information nonredundant database. Conserved sequences expressed in seedlings of wheat (Triticum aestivum), oat (Avena strigosa), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays) were identified that will be valuable in the design of arrays across grasses. To enhance the usability of the data, BarleyBase, a MIAME-compliant, MySQL relational database, serves as a public repository for raw and normalized expression data from the Barley1 GeneChip probe array. Interconnecting links with PlantGDB and Gramene allow BarleyBase users to perform gene predictions using the 21,439 non-redundant Barley1 exemplar sequences or cross-species comparison at the genome level, respectively. We expect that this first generation array will accelerate hypothesis generation and gene discovery in disease defense pathways, responses to abiotic stresses, development, and evolutionary diversity in monocot plants

    Gene Expression Biomarkers Provide Sensitive Indicators of in Planta Nitrogen Status in Maize[W][OA]

    No full text
    Over the last several decades, increased agricultural production has been driven by improved agronomic practices and a dramatic increase in the use of nitrogen-containing fertilizers to maximize the yield potential of crops. To reduce input costs and to minimize the potential environmental impacts of nitrogen fertilizer that has been used to optimize yield, an increased understanding of the molecular responses to nitrogen under field conditions is critical for our ability to further improve agricultural sustainability. Using maize (Zea mays) as a model, we have characterized the transcriptional response of plants grown under limiting and sufficient nitrogen conditions and during the recovery of nitrogen-starved plants. We show that a large percentage (approximately 7%) of the maize transcriptome is nitrogen responsive, similar to previous observations in other plant species. Furthermore, we have used statistical approaches to identify a small set of genes whose expression profiles can quantitatively assess the response of plants to varying nitrogen conditions. Using a composite gene expression scoring system, this single set of biomarker genes can accurately assess nitrogen responses independently of genotype, developmental stage, tissue type, or environment, including in plants grown under controlled environments or in the field. Importantly, the biomarker composite expression response is much more rapid and quantitative than phenotypic observations. Consequently, we have successfully used these biomarkers to monitor nitrogen status in real-time assays of field-grown maize plants under typical production conditions. Our results suggest that biomarkers have the potential to be used as agronomic tools to monitor and optimize nitrogen fertilizer usage to help achieve maximal crop yields
    corecore