23 research outputs found

    Genes Induced Late in Infection Increase Fitness of Vibrio cholerae after Release into the Environment

    Get PDF
    The facultative pathogen Vibrio cholerae can exist in both the human small bowel and in aquatic environments. While investigation of the infection process has revealed many factors important for pathogenesis, little is known regarding transmission of this or other water-borne pathogens. Using a temporally controlled reporter of transcription, we focus on bacterial gene expression during the late stage of infection and identify a unique class of V. cholerae genes specific to this stage. Mutational analysis revealed limited roles for these genes in infection. However, using a host-to-environment transition assay, we detected roles for six of ten genes examined for the ability of V. cholerae to persist within cholera stool and/or aquatic environments. Furthermore, passage through the intestinal tract was necessary to observe this phenotype. Thus, V. cholerae genes expressed prior to exiting the host intestinal tract are advantageous for subsequent life in aquatic environments

    Acute Bacterial Meningitis in Adults – A Review of 493 Episodes

    Get PDF
    To characterize acute bacterial meningitis in adults, we reviewed the charts of all persons 16 years of age or older in whom acute bacterial meningitis was diagnosed at Massachusetts General Hospital from 1962 through 1988. We included patients who were admitted after initial treatment at other hospitals. During the 27-year period, 445 adults were treated for 493 episodes of acute bacterial meningitis, of which 197 (40 percent) were nosocomial. Gram-negative bacilli (other than Haemophilus influenzae) caused 33 percent of the nosocomial episodes but only 3 percent of the community-acquired episodes. In the 296 episodes of community-acquired meningitis, the most common pathogens were Streptococcus pneumoniae (37 percent), Neisseria meningitidis (13 percent), and Listeria monocytogenes (10 percent); these organisms accounted for only 8 percent of the nosocomial episodes. Only 19 of the 493 episodes of meningitis (4 percent) were due to H. influenzae. Nine percent of all patients had recurrent meningitis; many had a cerebrospinal fluid leak. Seizures occurred in 23 percent of patients with community-acquired meningitis, and 28 percent had focal central nervous system findings. Risk factors for death among those with single episodes of community-acquired meningitis included older age ( ≥ 60 years), obtunded mental state on admission, and seizures within the first 24 hours. Among those with single episodes, the in-hospital mortality rate was 25 percent for community-acquired and 35 percent for nosocomial meningitis. The overall case fatality rate was 25 percent and did not vary significantly over the 27 years. In our large urban hospital, a major proportion of cases of acute bacterial meningitis in adults were nosocomial. Recurrent episodes of meningitis were frequent. The overall mortality rate remained high., Few studies of bacterial meningitis have focused on the clinical and pathologic features of the illness in adults1–5. Most large series have included both children and adults, with children accounting for 45 to 87 percent of cases6–16. Results have rarely been reported according to age group in these studies. To characterize acute bacterial meningitis in adults, we reviewed our experience at Massachusetts General Hospital over a 27-year period, from 1962 through 1988

    Identifying Recent Cholera Infections Using a Multiplex Bead Serological Assay

    Get PDF
    Estimates of incidence based on medically attended cholera can be severely biased. Vibrio cholerae O1 leaves a lasting antibody signal and recent advances showed that these can be used to estimate infection incidence rates from cross-sectional serologic data. Current laboratory methods are resource intensive and challenging to standardize across laboratories. A multiplex bead assay (MBA) could efficiently expand the breadth of measured antibody responses and improve seroincidence accuracy. We tested 305 serum samples from confirmed cholera cases (4 to 1083 d postinfection) and uninfected contacts in Bangladesh using an MBA (IgG/IgA/IgM for 7 Vibrio cholerae O1-specific antigens) as well as traditional vibriocidal and enzyme-linked immunosorbent assays (2 antigens, IgG, and IgA). While postinfection vibriocidal responses were larger than other markers, several MBA-measured antibodies demonstrated robust responses with similar half-lives. Random forest models combining all MBA antibody measures allowed for accurate identification of recent cholera infections (e.g., past 200 days) including a cross-validated area under the curve (cvAUC200) of 92%, with simpler 3 IgG antibody models having similar accuracy. Across infection windows between 45 and 300 days, the accuracy of models trained on MBA measurements was non-inferior to models based on traditional assays. Our results illustrated a scalable cholera serosurveillance tool that can be incorporated into multipathogen serosurveillance platforms. IMPORTANCE Reliable estimates of cholera incidence are challenged by poor clinical surveillance and health-seeking behavior biases. We showed that cross-sectional serologic profiles measured with a high-throughput multiplex bead assay can lead to accurate identification of those infected with pandemic Vibrio cholerae O1, thus allowing for estimates of seroincidence. This provides a new avenue for understanding the epidemiology of cholera, identifying priority areas for cholera prevention/control investments, and tracking progress in the global fight against this ancient disease

    AI-guided pipeline for protein-protein interaction drug discovery identifies an SARS-CoV-2 inhibitor

    Get PDF
    Protein–protein interactions (PPIs) offer great opportunities to expand the druggable proteome and therapeutically tackle various diseases, but remain challenging targets for drug discovery. Here, we provide a comprehensive pipeline that combines experimental and computational tools to identify and validate PPI targets and perform early-stage drug discovery. We have developed a machine learning approach that prioritizes interactions by analyzing quantitative data from binary PPI assays or AlphaFold-Multimer predictions. Using the quantitative assay LuTHy together with our machine learning algorithm, we identified high-confidence interactions among SARS-CoV-2 proteins for which we predicted three-dimensional structures using AlphaFold-Multimer. We employed VirtualFlow to target the contact interface of the NSP10-NSP16 SARS-CoV-2 methyltransferase complex by ultra-large virtual drug screening. Thereby, we identified a compound that binds to NSP10 and inhibits its interaction with NSP16, while also disrupting the methyltransferase activity of the complex, and SARS-CoV-2 replication. Overall, this pipeline will help to prioritize PPI targets to accelerate the discovery of early-stage drug candidates targeting protein complexes and pathways
    corecore