530 research outputs found
Scalar--Flat Lorentzian Einstein--Weyl Spaces
We find all three-dimensional Einstein--Weyl spaces with the vanishing scalar
curvatureComment: 4 page
Preliminary design of a supersonic cruise aircraft high-pressure turbine
Development of the supersonic cruise aircraft engine continued in this National Aeronautics and Space Administration (NASA) sponsored Pratt and Whitney program for the Preliminary Design of an Advanced High-Pressure Turbine. Airfoil cooling concepts and the technology required to implement these concepts received particular emphasis. Previous supersonic cruise aircraft mission studies were reviewed and the Variable Stream Control Engine (VSCE) was chosen as the candidate or the preliminary turbine design. The design was evaluated for the supersonic cruise mission. The advanced technology to be generated from these designs showed benefits in the supersonic cruise application and subsonic cruise application. The preliminary design incorporates advanced single crystal materials, thermal barrier coatings, and oxidation resistant coatings for both the vane and blade. The 1990 technology vane and blade designs have cooled turbine efficiency of 92.3 percent, 8.05 percent Wae cooling and a 10,000 hour life. An alternate design with 1986 technology has 91.9 percent efficiency and 12.43 percent Wae cooling at the same life. To achieve these performance and life results, technology programs must be pursued to provide the 1990's technology assumed for this study
Quantum error-correcting codes associated with graphs
We present a construction scheme for quantum error correcting codes. The
basic ingredients are a graph and a finite abelian group, from which the code
can explicitly be obtained. We prove necessary and sufficient conditions for
the graph such that the resulting code corrects a certain number of errors.
This allows a simple verification of the 1-error correcting property of
fivefold codes in any dimension. As new examples we construct a large class of
codes saturating the singleton bound, as well as a tenfold code detecting 3
errors.Comment: 8 pages revtex, 5 figure
Kerdock Codes Determine Unitary 2-Designs
The non-linear binary Kerdock codes are known to be Gray images of certain
extended cyclic codes of length over . We show that
exponentiating these -valued codewords by produces stabilizer states, that are quantum states obtained using
only Clifford unitaries. These states are also the common eigenvectors of
commuting Hermitian matrices forming maximal commutative subgroups (MCS) of the
Pauli group. We use this quantum description to simplify the derivation of the
classical weight distribution of Kerdock codes. Next, we organize the
stabilizer states to form mutually unbiased bases and prove that
automorphisms of the Kerdock code permute their corresponding MCS, thereby
forming a subgroup of the Clifford group. When represented as symplectic
matrices, this subgroup is isomorphic to the projective special linear group
PSL(). We show that this automorphism group acts transitively on the Pauli
matrices, which implies that the ensemble is Pauli mixing and hence forms a
unitary -design. The Kerdock design described here was originally discovered
by Cleve et al. (arXiv:1501.04592), but the connection to classical codes is
new which simplifies its description and translation to circuits significantly.
Sampling from the design is straightforward, the translation to circuits uses
only Clifford gates, and the process does not require ancillary qubits.
Finally, we also develop algorithms for optimizing the synthesis of unitary
-designs on encoded qubits, i.e., to construct logical unitary -designs.
Software implementations are available at
https://github.com/nrenga/symplectic-arxiv18a, which we use to provide
empirical gate complexities for up to qubits.Comment: 16 pages double-column, 4 figures, and some circuits. Accepted to
2019 Intl. Symp. Inf. Theory (ISIT), and PDF of the 5-page ISIT version is
included in the arXiv packag
Compressive Classification
This paper derives fundamental limits associated with compressive
classification of Gaussian mixture source models. In particular, we offer an
asymptotic characterization of the behavior of the (upper bound to the)
misclassification probability associated with the optimal Maximum-A-Posteriori
(MAP) classifier that depends on quantities that are dual to the concepts of
diversity gain and coding gain in multi-antenna communications. The diversity,
which is shown to determine the rate at which the probability of
misclassification decays in the low noise regime, is shown to depend on the
geometry of the source, the geometry of the measurement system and their
interplay. The measurement gain, which represents the counterpart of the coding
gain, is also shown to depend on geometrical quantities. It is argued that the
diversity order and the measurement gain also offer an optimization criterion
to perform dictionary learning for compressive classification applications.Comment: 5 pages, 3 figures, submitted to the 2013 IEEE International
Symposium on Information Theory (ISIT 2013
Mismatch in the Classification of Linear Subspaces: Sufficient Conditions for Reliable Classification
This paper considers the classification of linear subspaces with mismatched
classifiers. In particular, we assume a model where one observes signals in the
presence of isotropic Gaussian noise and the distribution of the signals
conditioned on a given class is Gaussian with a zero mean and a low-rank
covariance matrix. We also assume that the classifier knows only a mismatched
version of the parameters of input distribution in lieu of the true parameters.
By constructing an asymptotic low-noise expansion of an upper bound to the
error probability of such a mismatched classifier, we provide sufficient
conditions for reliable classification in the low-noise regime that are able to
sharply predict the absence of a classification error floor. Such conditions
are a function of the geometry of the true signal distribution, the geometry of
the mismatched signal distributions as well as the interplay between such
geometries, namely, the principal angles and the overlap between the true and
the mismatched signal subspaces. Numerical results demonstrate that our
conditions for reliable classification can sharply predict the behavior of a
mismatched classifier both with synthetic data and in a motion segmentation and
a hand-written digit classification applications.Comment: 17 pages, 7 figures, submitted to IEEE Transactions on Signal
Processin
Instantons in the Double-Tensor Multiplet
The double-tensor multiplet naturally appears in type IIB superstring
compactifications on Calabi-Yau threefolds, and is dual to the universal
hypermultiplet. We revisit the calculation of instanton corrections to the
low-energy effective action, in the supergravity approximation. We derive a
Bogomolny'i bound for the double-tensor multiplet and find new instanton
solutions saturating the bound. They are characterized by the topological
charges and the asymptotic values of the scalar fields in the double-tensor
multiplet.Comment: 17 pages, LaTeX2e with amsmath.sty; v2: minor change
- …