2 research outputs found
On the Usefulness of the Logarithmic Skew Normal Distribution for Describing Claims Size Data
In this paper, the three-parameter skew lognormal distribution is proposed to model actuarial data concerning losses. This distribution yields a satisfactory fit to empirical data in the whole range of the empirical distribution as compared to other distributions used in the actuarial statistics literature. To the best of our knowledge, this distribution has not been used in insurance context and it might be suitable for computing reinsurance premiums in situations where the right tail of the empirical distribution plays an important role. Furthermore, a regression model can be simply derived to explain the response variable as a function of a set of explanatory variables
The Poisson-conjugate Lindley mixture distribution
A new discrete distribution that depends on two parameters is introduced in this article. From this new distribution the geometric distribution is obtained as a special case. After analyzing some of its properties such as moments and unimodality, recurrences for the probability mass function and differential equations for its probability generating function are derived. In addition to this, parameters are estimated by maximum likelihood estimation numerically maximizing the log-likelihood function. Expected frequencies are calculated for different sets of data to prove the versatility of this discrete model