22 research outputs found

    Reliability of the biceps brachii M-wave

    Get PDF
    BACKGROUND: The peak-to-peak (P-P) amplitude of the maximum M-wave and the area of the negative phase of the curve are important measures that serve as methodological controls in H-reflex studies, motor unit number estimation (MUNE) procedures, and normalization factors for voluntary electromyographic (EMG) activity. These methodologies assume, with little evidence, that M-wave variability is minimal. This study therefore examined the intraclass reliability of these measures for the biceps brachii. METHODS: Twenty-two healthy adults (4 males and 18 females) participated in 5 separate days of electrical stimulation of the musculocutaneous nerve supplying the biceps brachii muscle. A total of 10 stimulations were recorded on each of the 5 test sessions: a total of fifty trials were used for analysis. A two-factor repeated measures analysis of variance (ANOVA) evaluated the stability of the group means across test sessions. The consistency of scores within individuals was determined by calculating the intraclass correlation coefficient (ICC). The variance ratio (VR) was then used to assess the reproducibility of the shape of the maximum M-wave within individual subjects. RESULTS: The P-P amplitude means ranged from 12.62 ± 4.33 mV to 13.45 ± 4.07 mV across test sessions. The group means were highly stable. ICC analysis also revealed that the scores were very consistent (ICC = 0.98). The group means for the area of the negative phase of the maximum M-wave were also stable (117 to 126 mV·ms). The ICC analysis also indicated a high degree of consistency (ICC = 0.96). The VR for the sample was 0.244 ± 0.169, which suggests that the biceps brachii maximum M-wave shape was in general very reproducible for each subject. CONCLUSION: The results support the use of P-P amplitude of the maximum M-wave as a methodological control in H-reflex studies, and as a normalization factor for voluntary EMG. The area of the negative phase of the maximum M-wave is both stable and consistent, and the shape of the entire waveform is highly reproducible and may be used for MUNE procedures

    Knee power is an important parameter in understanding medial knee joint load in knee osteoarthritis.

    Get PDF
    Calder, K. M., Acker, S. M., Arora, N., Beattie, K. A., Callaghan, J. P., Adachi, J. D., & Maly, M. R. (2014). Knee Power Is an Important Parameter in Understanding Medial Knee Joint Load in Knee Osteoarthritis: Knee Power and OA. Arthritis Care & Research, 66(5), 687–694. https://doi.org/10.1002/acr.22223Objective To determine the extent to which knee extensor strength and power explain variance in knee adduction moment (KAM) peak and impulse in clinical knee osteoarthritis (OA). Methods Fifty-three adults (mean ± SD age 61.6 ± 6.3 years, 11 men) with clinical knee OA participated. The KAM waveform was calculated from motion and force data and ensemble averaged from 5 walking trials. The KAM peak was normalized to body mass (Nm/kg). The mean KAM impulse reflected the mean total medial knee load during stride (Nm × seconds). For strength, the maximum knee extensor moment attained from maximal voluntary isometric contractions (MVIC) was normalized to body mass (Nm/kg). For power, the maximum knee extensor power during isotonic contractions, with the resistance set at 25% of MVIC, was normalized to body mass (W/kg). Covariates included age, sex, knee pain on the Knee Injury and Osteoarthritis Outcome Score, gait speed, and body mass index (BMI). Relationships of the KAM peak and impulse with strength and power were examined using sequential stepwise forward linear regressions. Results Covariates did not explain variance in the KAM peak. While extensor strength did not, peak knee extensor power explained 8% of the variance in the KAM peak (P = 0.02). Sex and BMI explained 24% of the variance in the KAM impulse (P < 0.05). Sex, BMI, and knee extensor power explained 31% of the variance in the KAM impulse (P = 0.02), with power contributing 7% (P < 0.05). Conclusion Knee extensor power was more important than isometric knee strength in understanding medial knee loads during gait.Canadian Institutes of Health Research. Grant Number: 102643Canadian Institutes of Health Research Joint Motion Program Postdoctoral FellowshipNetwork Scholar Award through The Arthritis Society/Canadian Arthritis NetworkTier I Canada Research Chair in Spine Biomechanics and Injury PreventionAlliance for Better Bone Health Chair in RheumatologyNew Investigator Award from the Canadian Institutes of Health Researc

    Motor unit potential morphology differences in individuals with non-specific arm pain and lateral epicondylitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathophysiology of non-specific arm pain (NSAP) is unclear and the diagnosis is made by excluding other specific upper limb pathologies, such as lateral epicondylitis or cervical radiculopathy. The purpose of this study was to determine: (i) if the quantitative parameters related to motor unit potential morphology and/or motor unit firing patterns derived from electromyographic (EMG) signals detected from an affected muscle of patients with NSAP are different from those detected in the same muscle of individuals with lateral epicondylitis (LE) and/or control subjects and (ii) if the quantitative EMG parameters suggest that the underlying pathophysiology in NSAP is either myopathic or neuropathic in nature.</p> <p>Methods</p> <p>Sixteen subjects with NSAP, 11 subjects with LE, eight subjects deemed to be at-risk for developing a repetitive strain injury, and 37 control subjects participated. A quantitative electromyography evaluation was completed using decomposition-based quantitative electromyography (DQEMG). Needle- and surface-detected EMG signals were collected during low-level isometric contractions of the extensor carpi radialis brevis (ECRB) muscle. DQEMG was used to extract needle-detected motor unit potential trains (MUPTs), and needle-detected motor unit potential (MUP) and surface detected motor unit potential (SMUP) morphology and motor unit (MU) firing rates were compared among the four groups using one-way analysis of variance (ANOVA). Post hoc analyses were performed using Tukey's pairwise comparisons.</p> <p>Results</p> <p>Significant group differences were found for all MUP variables and for MU firing rate (<it>p</it> < 0.006). The post-hoc analyses revealed that patients with NSAP had smaller MUP amplitude and SMUP amplitude and area compared to the control and LE groups (<it>p </it>< 0.006). MUP duration and AAR values were significantly larger in the NSAP, LE and at-risk groups compared to the control group (<it>p </it>< 0.006); while MUP amplitude, duration and AAR values were smaller in the NSAP compared to the LE group. SMUP duration was significantly shorter in the NSAP group compared to the control group (<it>p </it>< 0.006). NSAP, LE and at-risk subjects had lower mean MU firing rates than the control subjects (<it>p </it>< 0.006).</p> <p>Conclusion</p> <p>The size-related parameters suggest that the NSAP group had significantly smaller MUPs and SMUPs than the control and LE subjects. Smaller MUPs and SMUPs may be indicative of muscle fiber atrophy and/or loss. A prospective study is needed to confirm any causal relationship between smaller MUPs and SMUPs and NSAP as found in this work.</p

    Training distribution and the acquisition of maximal isometric elbow flexion strength

    No full text
    Twenty-six sedentary, college-aged females were matched and randomly assigned to one of two groups. The massed group (n=13) completed 15 maximal isometric elbow flexion strength trials in one session, while the distributed group (n=13) performed five such contractions on three successive days. After a two-week and three month rest interval, both groups returned to perfonn another five maximal isometric elbow flexion strength trials to assess retention of any potential strength gains. Elbow flexion torque and surface electromyography (SEMG) of the biceps and triceps were monitored concurrently. There was a significant (P < 0.05) increase in strength in both groups from block one (first five contractions) to block four (first retest) and from block one to block five (second retest). Both groups exhibited a similar linear increasing (P < 0.05) trend in biceps root-mean-square (RMS) SEMG amplitude. A significant (P < 0.05) decrease in triceps RMS SEMG amplitude was found between block one and block four for the distributed group. However, a significant (P < 0.05) increase was then found between block one and five for the massed group, and between blocks four and five for distributed group. These results suggest that there is flexibility in resistive exercise schedules. An increase in neural drive to the agonist muscle continued throughout testing. This was accompanied by a reduction in antagonist co activation that was a short-tenn (two weeks) training effect, dissipated over the longer rest interval (three months)

    Bayesian aggregation versus majority vote in the characterization of non-specific arm pain based on quantitative needle electromyography

    No full text
    Abstract Background Methods for the calculation and application of quantitative electromyographic (EMG) statistics for the characterization of EMG data detected from forearm muscles of individuals with and without pain associated with repetitive strain injury are presented. Methods A classification procedure using a multi-stage application of Bayesian inference is presented that characterizes a set of motor unit potentials acquired using needle electromyography. The utility of this technique in characterizing EMG data obtained from both normal individuals and those presenting with symptoms of "non-specific arm pain" is explored and validated. The efficacy of the Bayesian technique is compared with simple voting methods. Results The aggregate Bayesian classifier presented is found to perform with accuracy equivalent to that of majority voting on the test data, with an overall accuracy greater than 0.85. Theoretical foundations of the technique are discussed, and are related to the observations found. Conclusions Aggregation of motor unit potential conditional probability distributions estimated using quantitative electromyographic analysis, may be successfully used to perform electrodiagnostic characterization of "non-specific arm pain." It is expected that these techniques will also be able to be applied to other types of electrodiagnostic data.</p

    Sensory nerve action potentials and sensory perception in women with arthritis of the hand

    No full text
    Abstract Background Arthritis of the hand can limit a person’s ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Methods Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. Results All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p  Discussion We propose, based on these findings, that women with hand OA or RA may have axonal loss of sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception.</p
    corecore