601 research outputs found

    Caracterização dos agroecossistemas e manejo de germoplasma de Citrullus em três regiões do Nordeste brasileiro.

    Get PDF
    Sendo assim, este trabalho teve como objetivos caracterizar, estudar e descrever os agroecossistemas nordestinos representados pelos distritos de Jamarí-MA, Massaroca-BA e Urimamã-PE

    Designing all-graphene nanojunctions by covalent functionalization

    Full text link
    We investigated theoretically the effect of covalent edge functionalization, with organic functional groups, on the electronic properties of graphene nanostructures and nano-junctions. Our analysis shows that functionalization can be designed to tune electron affinities and ionization potentials of graphene flakes, and to control the energy alignment of frontier orbitals in nanometer-wide graphene junctions. The stability of the proposed mechanism is discussed with respect to the functional groups, their number as well as the width of graphene nanostructures. The results of our work indicate that different level alignments can be obtained and engineered in order to realize stable all-graphene nanodevices

    Optical Excitations and Field Enhancement in Short Graphene Nanoribbons

    Full text link
    The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semi-empirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake, and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries

    Optical properties and charge-transfer excitations in edge-functionalized all-graphene nanojunctions

    Full text link
    We investigate the optical properties of edge-functionalized graphene nanosystems, focusing on the formation of junctions and charge transfer excitons. We consider a class of graphene structures which combine the main electronic features of graphene with the wide tunability of large polycyclic aromatic hydrocarbons. By investigating prototypical ribbon-like systems, we show that, upon convenient choice of functional groups, low energy excitations with remarkable charge transfer character and large oscillator strength are obtained. These properties can be further modulated through an appropriate width variation, thus spanning a wide range in the low-energy region of the UV-Vis spectra. Our results are relevant in view of designing all-graphene optoelectronic nanodevices, which take advantage of the versatility of molecular functionalization, together with the stability and the electronic properties of graphene nanostructures.Comment: J. Phys. Chem. Lett. (2011), in pres

    Assay strategies for the discovery and validation of therapeutics targeting <i>Brugia pahangi</i> Hsp90

    Get PDF
    The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target
    corecore