2,195 research outputs found
Symmetry Nonrestoration in a Resummed Renormalized Theory at High Temperature
We reinvestigate the interesting phenomenon of symmetry nonrestoration at
high temperature in the multifield O(N_1) X O(N_2) model. We apply modified
self-consistent resummation (MSCR) in order to obtain the scalar dressed masses
and find in what circumstances a resummed multifield theory which has symmetry
(non)restoration can be renormalized. It is shown that, aside from the
consistency of the MSCR method, the basic ingredient that guarantees the
renormalization of a multifield model within a resummation approach is the T^2
mass behavior of field theory at high temperature.Comment: 14 pages, 1 ps figure, revtex, Phys. Rev. D versio
Temperature effects on the magnetization of quasi-one-dimensional Peierls distorted materials
It is shown that temperature acts to disrupt the magnetization of Peierls
distorted quasi-one-dimensional materials (Q1DM). The mean-field finite
temperature phase diagram for the field theory model employed is obtained by
considering both homogeneous and inhomogeneous condensates. The tricritical
points of the second order transition lines of the gap parameter and
magnetization are explicitly calculated. It is also shown that in the absence
of an external static magnetic field the magnetization is always zero, at any
temperature. As expected, temperature does not induce any magnetization effect
on Peierls distorted Q1DM.Comment: 11 pages, 2 figure
Real-time Spatial Detection and Tracking of Resources in a Construction Environment
Construction accidents with heavy equipment and bad decision making can be based on poor knowledge of the site environment and in both cases may lead to work interruptions and costly delays. Supporting the construction environment with real-time generated three-dimensional (3D) models can help preventing accidents as well as support management by modeling infrastructure assets in 3D. Such models can be integrated in the path planning of construction equipment operations for obstacle avoidance or in a 4D model that simulates construction processes. Detecting and guiding resources, such as personnel, machines and materials in and to the right place on time requires methods and technologies supplying information in real-time. This paper presents research in real-time 3D laser scanning and modeling using high range frame update rate scanning technology. Existing and emerging sensors and techniques in three-dimensional modeling are explained. The presented research successfully developed computational models and algorithms for the real-time detection, tracking, and three-dimensional modeling of static and dynamic construction resources, such as workforce, machines, equipment, and materials based on a 3D video range camera. In particular, the proposed algorithm for rapidly modeling three-dimensional scenes is explained. Laboratory and outdoor field experiments that were conducted to validate the algorithm’s performance and results are discussed
Maximal acceleration or maximal accelerations?
We review the arguments supporting the existence of a maximal acceleration
for a massive particle and show that different values of this upper limit can
be predicted in different physical situations.Comment: 13 pages, Latex, to be published in Int. J. Mod. Phys.
- …