23 research outputs found

    Down-Regulation of Vascular Endothelial Growth Factor by Tissue Inhibitor of Metalloproteinase-2: Effect on in Vivo Mammary Tumor Growth and Angiogenesis

    Full text link
    The tissue inhibitor of metalloproteinases-2 (TIMP-2) has at least two independent functions, i.e., regulation of matrix metalloproteinases and growth promoting activity. We investigated the effects of TIMP-2 overexpression, induced by retroviral mediated gene transfer, on the in vivo development of mammary tumors in syngeneic mice inoculated with EF43.fgf-4 cells. The EF43.fgf-4 cells established by stably infecting the normal mouse mammary EF43 cells with a retroviral expression vector for the fgf-4 oncogene, are highly tumorigenic and overproduce vascular endothelial growth factor (VEGF). Despite a promotion of the in vitro growth rate of EF43.fgf-4 cells overexpressing timp-2, the in vivo tumor growth was delayed. At day 17 post-cell injection, the volume of tumor derived from TIMP-2-overexpressing cells was reduced by 80% as compared with that obtained with control cells. Overexpression of TIMP-2 was associated with a down-regulation of VEGF expression in vitro and in vivo, a reduction of vessel size, density, and blood supply in the induced tumors. In addition, TIMP-2 completely inhibited the angiogenic activity of EF43.fgf-4 cell-conditioned medium in vitro using a rat aortic ring model. Our findings suggest that overexpression of TIMP-2 delays growth and angiogenesis of mammary carcinoma in vivo and that down-regulation of VEGF expression may play an important role in this TIMP-2-mediated antitumoral and antiangiogenic effects. Finally the in vivo delivery of TIMP-2, as assessed by i.v. injection of recombinant adenoviruses vectors, significantly reduced the growth of the EF43.fgf-4-induced tumors. This effect of TIMP-2 was shown to be equally comparable with that of angiostatin, a known potent inhibitor of angiogenesis

    Angiogenesis by Fibroblast Growth Factor 4 Is Mediated through an Autocrine Up-regulation of Vascular Endothelial Growth Factor Expression

    Full text link
    The infection of normal mouse mammary EF43 cells by a retroviral vector carrying either Fgf-3 (EF43.Fgf-3) or Fgf-4 (EF43.Fgf-4) cDNA resulted in the transformation of cells displaying different tumorigenic potentials in nude mice (A. Hajitou and C-M. Calberg-Bacq, Int. J. Cancer, 63: 702-709, 1995). EF43.Fgf-4 produced rapidly developing tumors at all sites of inoculation, whereas EF43.Fgf-3 produced slowly growing tumors only in the mammary fat pad. Cells infected with the vector carrying the selection gene alone (EF43.C) were not tumorigenic. The angiogenic properties of these cells were tested in an in vitro angiogenesis model using human umbilical vein endothelial cells (HUVECs) cultured at the surface of a type I collagen gel and their capacity to form tube-like structures on invasion of the gel. Only the conditioned medium (CM) of EF43.Fgf-4 induced an angiogenic morphotype in HUVECs. In parallel, the mRNA expression of matrix metalloproteinase 1 and c-ETS-1 was increased in the HUVECs displaying a differentiated phenotype, whereas the tissue inhibitor of matrix metalloproteinase 1 mRNA level was decreased. Recombinant human fibroblast growth factor 4 (FGF-4) did not induce an angiogenic phenotype in HUVECs by itself. By Western blot analysis, a high expression of vascular endothelial growth factor (VEGF) was detected in the EF43.Fgf-4 CM. This result was confirmed by Northern blot analysis of total RNA extracted from the three cell types; the steady-state level of VEGF mRNA was low and equivalent in EF43.C and EF43.Fgf-3, whereas it was strongly increased in EF43.Fgf-4. Culturing EF43 cells carrying only the selection gene with increasing concentrations of recombinant human FGF-4 resulted in a dose-dependent stimulation of VEGF. The induction of the angiogenic morphotype and the parallel modulations of the biosynthetic phenotype in HUVECs were completely suppressed by adding a neutralizing antibody directed against VEGF to EF43.Fgf-4 CM. Furthermore, inhibition of protein kinase C by bisindoylmaleimide suppressed the angiogenic phenotype induced by the CM of EF43.Fgf-4. Our results point to an indirect angiogenic activity of FGF-4 through the autocrine induction of VEGF secretion by EF43.Fgf-4 cells, an original signaling pathway that might be significant in tumor progression and metastasis

    Reovirus infection in the pigeon.

    Full text link
    The pigeon is sisceptible to Reovirus infection since a strain has been isolated from a sick pigeon and 8p. cent of pigeons selected at random in Belgium possess specific antibodies. The strain of Reovirus isolated does not seem to be highly pathogenic for the pigeon as experimental inoculation resulted in the appearance of no symptoms except for excretion of the virus in faeces

    Propagation of bovine rotavirus by young dogs

    Full text link
    Ten young dogs were experimentally infected twice with different isolates of bovine rotavirus and 2 uninfected dogs were kept in contact with them. None of the animals developed diarrhoea, but all of them excreted rotavirus in their faeces over a period of up to 10 days after each inoculation, as shown by counterimmunoelectro-osmophoresis and virus isolation. Dogs may thus play a role in the epizootiology of rotavirus diarrhoea in calves. Seroconversion occurred in 6 of the 10 infected dogs but in neither of the 2 contact controls. © 1983
    corecore